Return to search

Etude et optimisation des interfaces dans les composites à base d'étain pour électrode négative d'accumulateur li-ion de haute énergie / Study and optimisation of the interfaces in tin based composites as negative electrodes in li-ion high energy cells

Le travail de thèse présenté dans ce mémoire, est consacré à l'étude des interactions interfaciales entre une espèce active électrochimiquement (l'étain) et une matrice (le borophosphate) capable d'absorber les variations volumiques dues à la formation électrochimique des diverses compositions Li-Sn (« buffer »). L'objectif de cette étude est de comprendre la nature des réactions ayant lieu avec l'introduction du Li dans le matériau composite. Pour cela, nous avons réalisé une étude détaillée d'un composite de référence mis au point dans des études précédentes Sn-0,4 BPO4 ; nous avons évalué l'influence du type de matrice et de la voie de synthèse sur son comportement global. Le matériau composite a pu être décrit comme possédant une interface vitreuse contenant de l'étain oxydé (SnII) qui lui donne la structuration suivante : Elément actif Sn0(1-w)/SnIIwBxPyOz/BPO4 Phase support Interphase. Des études in situ operando complémentaires en diffraction des rayons X et spectrométrie Mößbauer ont permis d'analyser le comportement électrochimique du matériau composite : un premier processus correspond à l'extrusion d'une petite partie d'étain métallique de la zone interfaciale qui augmente la conductivité électronique du composite ; il est suivi par une réorganisation de l'interface avec extrusion de tout le contenu en étain et la formation des premières compositions Li-Sn. Enfin, le cyclage galvanostatique se poursuit grâce à la formation de plusieurs compositions Li-Sn riches en étain (Li2Sn5 et LiSn) et puis enrichies en lithium (Li13Sn5 et Li7Sn2). / The Phd work, presented in this manuscript, is devoted to the study of the interface interactions between an electroactive species (tin) and a matrix (borophosphate). The latter has a buffer role and is thus able to absorb the volume variations taking place during the Li-Sn electrochemical reaction.The aim of this study is to understand the nature of the reactions occurring during lithium introduction in the composite. In order to do that, a detailed study of a previously studied reference composite (Sn-0,4 BPO4) has been undertaken. The effect of some modified matrixes as well as the synthesis route has also been evaluated. The composite material can be described as having a glassy interface containing some oxidized tin (SnII) which leads to the following global structure: Active element Sn0(1-w)/SnIIwBxPyOz/BPO4 Buffering phase Interphase. A complementary in situ operando study (X-ray diffraction and Mößbauer spectroscopy) gave the possibility to analyze the electrochemical behavior of the material. A first process corresponds to a small tin extrusion from the interfacial zone. This contributes to the increase of the electrical conductivity of the composite material which is followed by the interphase reorganization with the extrusion of the whole tin content. Li-Sn reactions take place then, with the galvanostatic cycling going on between the tin rich compositions (Li2Sn5 and LiSn) and the lithium rich ones (Li13Sn5 and Li7Sn2).

Identiferoai:union.ndltd.org:theses.fr/2010MON20064
Date23 November 2010
CreatorsConte, Donato Ercole
ContributorsMontpellier 2, Jumas, Jean-Claude
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.003 seconds