Return to search

Développement d'une chaîne de calcul pour les interactions fluide-structure et application aux instabilités aéro-acoustiques d'un moteur à propergol solide / Development of a numerical chain for fluid-structure interactions and application to aero-acoustic instabilities in solid rocket motor

Les moteurs à propergol solide sont parfois le siège d'instabilités aéroacoustiques résultant d'un couplage entre l'hydrodynamique des gaz brûlés et les modes acoustiques de la chambre de combustion. Ces instabilités se traduisent par de fortes Oscillations de Pression (ODP) dans la chambre de combustion du moteur. Ces ODP entrainent des vibrations de la structure, qui si elles venaient à dépasser certains niveaux pourraient nuire à la charge utile. Au vu du coût d'un essai, il est important de disposer d'outils permettant de prédire l'apparition de ces instabilités au moment de la conception. L'objectif de cette thèse est en premier lieu la mise au point d'une chaîne de couplage permettant d'évaluer l'impact des interactions fluide-structure sur l'amplitude des oscillations aéroacoustiques présentes au sein du propulseur. Une attention particulière est portée à l'algorithme de couplage entre les solveurs fluide et solide afin d'assurer une bonne conservation de l'énergie à l'interface fluide-structure, point clé dans l'étude d'instabilités. La chaîne numérique ainsi conçue est appliquée à une configuration réduite du moteur à propergol solide d'Ariane 5 dans le cadre de deux études. La première porte sur l'impact des vibrations de la structure sur les d'instabilités aéroacoustiques. L'effet d'un croisement de fréquences des modes propres longitudinaux de la structure et un des modes acoustiques de la chambre de combustion est traité. La seconde étude s'intéresse à l'effet des battements des protections thermiques du propulseur dans l'écoulement. Une structuration de l'écoulement et un net renforcement des ODP sont mis en évidence. / Large solid propellant rocket motors may be subjected to aero-acoustic instabilities arising from a coupling between the burnt gas flow and the acoustic eigenmodes of the combustion chamber. These instabilities lead to large pressure oscillations in the combustion chamber. These pressure oscillations cause vibrations which might jeopardize the payload if they happen to be larger than a certain threshold. Given the size and cost of any single firing test or launch, it is of first importance to rely on numerical tools able to predict these instabilities so that they can be avoided at the design level. The first purpose of this thesis is to build a numerical tool in order to evaluate how the coupling of the fluid flow and the whole structure of the motor influences the amplitude of the aeroacoustic oscillations living inside the rocket. A particular attention was paid to the coupling algorithm between the fluid and the solid solvers in order to ensure the best energy conservation through the interface.The numerical chain is applied to a sub-scaled configuration of Ariane 5 solid rocket motor in two studies. The first relates to the impact of vibration of the structure on aeroacoustic instabilities. The effect of a crossover frequency between the longitudinal modes of the structure and the acoustic modes of the combustion chamber is assessed. The second study examines the effect of thermal protection oscillations in the flow. An increased of the flow organisation and a significant strengthening of pressure oscillations are highlighted.

Identiferoai:union.ndltd.org:theses.fr/2012MON20256
Date07 December 2012
CreatorsRichard, Julien
ContributorsMontpellier 2, Nicoud, Franck, Staffelbach, Gabriel
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds