Return to search

Endommagement non-local, interactions et effets d’échelle / Non-local damage, interactions and size effect

Cette thèse porte sur la description du processus de fissuration du béton soumis à des sollicitations mécaniques. L'objectif principal est d'améliorer la description macroscopique à l'aide d'un modèle continu. Un modèle décrivant de façon cohérente le comportement à la rupture du béton devrait au moins représenter : (i) la transition continu/discret et l'effet d'écran induit par une macrofissure, (ii) la discontinuité du déplacement, (iii) l'interaction entre le processus de fissuration et un bord libre (iv) il doit aussi être capable de reproduire la réponse mécanique obtenue expérimentalement. Dans un premier temps, nous avons fait une analyse comparative entre le modèle d'endommagement non-local classique et différents modèles continus améliorés proposés dans la littérature. Des outils de comparaison ont été proposés pour cette analyse : (i) du point de vue numérique, deux exemples considérant la rupture dynamique d'une barre (barre en traction et test d'écaillage) et (ii) du point de vue expérimental, une base de données issue d'une série d'essais sur des poutres homothétiques entaillées et non-entaillées en flexion trois points. Nous avons conclu que seule une combinaison entre différentes formulations peut rendre compte de tous les mécanismes mis en jeu lors du processus de fissuration. Elle inclue à la fois la façon dont l'information non-locale est transmise, la croissance de défauts et la description des effets de bord. Nous avons mis en évidence que son implémentation 2D ou 3D reste complexe et donc la comparaison avec des données expérimentales s'avère impossible. Dans un deuxième temps, nous avons choisi de changer l'échelle d'analyse pour connaitre en détail les mécanismes ayant lieu au sein de la mésostructure du béton (pâte, granulat, interface) à l'aide d'un modèle mésoscopique basé sur des éléments lattice. Cette analyse a permis de conclure que la prise en compte des interactions entre les composants de la mésostructure du béton fournit des résultats numériques plus proches de la réalité que ceux obtenus avec le modèle non-local macroscopique classique. Le mésomodèle est capable de représenter aussi bien la charge maximale (effet d'échelle) que la phase adoucissante pour toutes les tailles de poutre et pour toutes les géométries d'entaille. Nous avons transposé la prise en compte des interactions de l'échelle mésoscopique à l'échelle macroscopique au travers de la fonction poids d'un nouveau modèle non-local. Elle est estimée en décrivant le matériau comme étant un ensemble d'inclusions qui interagissent entre elles lors du chargement. Ces inclusions sont dilatées élastiquement et successivement afin de caractériser le transfert d'information au sein du matériau et de reconstruire la fonction poids du modèle proposé. Ce nouveau modèle est capable de décrire la transition continu/discret et l'effet d'écran, la discontinuité du déplacement et de retrouver un effet de bord cohérent avec les résultats de la micromécanique. Son implémentation en 2D est présentée et les premiers résultats de calculs illustrent la démarche. Finalement, nous revenons sur la modélisation mésoscopique du comportement du béton. Sa richesse en information peut conduire à une compréhension plus fine du processus de fissuration et de la création puis l'évolution de la zone d'élaboration. / This work focuses on the description of the process of cracking of concrete subjected to mechanical stresses. The main objective is to improve the understanding of the mechanisms involved using a continuous macroscopic model. A model describing consistently the fracture behavior of concrete should at least represent: (i) the continuous / discrete transition and the shielding effect induced by a macrocrack, (ii) the discontinuity of displacement, (iii) the interaction between the cracking process and a free boundary, (iv) it must also be able to reproduce the mechanical response obtained experimentally. At first, we made a comparative analysis of the classical non-local damage model and others improved continuous models proposed in the literature. Comparison tools have been proposed for this analysis: (i) from a numerical point of view, two examples considering the dynamic rupture of a bar (tensile test and spalling test) and (ii) from an experimental point of view, a database obtained from three-point bending test on notched and unnotched geometrically similar beams made from the same concrete formulation. We found that only a combination of this formulations may account for the different mechanisms involved in the process of cracking. It includes the transmission of the non-local information, the growing of voids and the description of boundary effects. We shown that its implementation in 2D or 3D remains complex and thus comparison with experimental results are impossible. In a second step, we decided to change the scale of analysis to precise the mechanisms which are taking place within the mesostructure of concrete using a mesomodel based on lattice elements. This analysis shown that since the mesomodel intrinsically took into account the interactions evolution within the structure, it is able to provide relevant results when classical macroscopic non-local models failed. It is able to represent both the maximum load (size effect) and the softening regime whatever the beam size or the pre-notch geometry. In addition, we proposed a new non-local framework where the interactions were upscale from the mesoscale to the macroscale through a new weight function. This function is estimated by describing the material as a set of inclusions that interact upon loading. These inclusions are successively elastically dilated to characterize the transfer of information within the material and rebuild the non-local weight function. This new model is able to describe the continuous / discrete transition, the shielding effect and the discontinuity of displacement. The model has been implemented in 2D in a finite element code and first results shown its capabilities to reproduce experimental results in term of maximum loads. In a third step, the richness of the mesoscopic approach has been used to describe precisely the local process of failure in term of fracture process zone evolution.

Identiferoai:union.ndltd.org:theses.fr/2012PAUU3032
Date07 December 2012
CreatorsRojas Solano, Laura Beatriz
ContributorsPau, Pijaudier-Cabot, Gilles, Grégoire, David
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0031 seconds