Return to search

Fiabilité et variabilité temporelle des technologies CMOS FDSOI 28-20nm, du transistor au circuit intégré / Reliability and time-dependent variability of FDSOI technologies for the 20-28nm CMOS node from transistor to circuit level

La course à la miniaturisation requiert l'introduction d'architectures de transistors innovantes enremplacement des technologies conventionnelles sur substrat de silicium. Ainsi la technologie UTBB-FDSOI permet d'améliorer notablement l'intégrité électrostatique et assure une transition progressive vers les structures 3D multigrilles. Ces dispositifs diffèrent des structures conventionnelles par la présence d'un oxyde enterré qui va non seulement modifier l'électrostatique mais également introduire une nouvelle interface de type Si/SiO2 sujette à d'éventuelles dégradations. Par ailleurs, la réduction des dimensions des transistors s'accompagne d'une augmentation de la dispersion des paramètres électriques. En parallèle, le vieillissement de ces transistors introduit une forme additionnelle de variabilité : la variabilité temporelle, qu'il convient d'intégrer à cette composante moyenne de dégradation. Ce travail de thèse est développé sur quatre chapitres, où nous nous intéressons dans le premier chapitre aux évolutions technologiques nécessaires pour passer des technologies CMOS standards (40LP, 28LP) à cette technologie UTBB-FDSOI. Puis dans le second chapitre, nous abordons la dégradation moyenne des transistors et l'impact de l'architecture sur la fiabilité des dispositifs, étudiés sur les mécanismes de dégradations NBTI et HCI. Le troisième chapitre donne au niveau transistor une description analytique et physique de la variabilité temporelle induite par le NBTI. Enfin, cette variabilité temporelle est intégrée au niveau cellules SRAM dans le quatrième chapitre afin de prédire les distributions des tensions minimums de fonctionnement (Vmin) des mémoires SRAM. / The classical CMOS structure is reaching its scaling limits at the 20nm node and innovative architectures of transistors are required to replace these conventional Bulk transistors. UTBB-FDSOI transistors can improve significantly the electrostatic integrity and ensure a smooth transition to 3D multi-gates devices that will be required for sub-10nm nodes. The main difference compared to conventional transistor is related to the integration of a buried oxide (BOX) underneath the silicon film. This latter impacts the electrostatic behavior of these devices and introduces an additional Si/SiO2 interface which may be degraded due to ageing. It is then necessary to evaluate its impact on the NBTI and HCI reliability mechanisms. Besides, transistor scaling leads to an increasing variability which translates into an increased dispersion of the electrical parameters of the transistors. Meanwhile, time dependent variability due to ageing needs to be added to the average degradation component. This PhD done in STMicroelectronics R&D center is divided into four chapters: in the first one, the main technological developments necessary to keep on sustaining Moore's law requirements resulting in the UTBBFDSOI structure introduction is discussed. Then in the second chapter the architecture impact on the average reliability mechanism is discussed at transistor and Ring Oscillators' levels. In the third chapter, the time dependent variability due to NBTI is described and compared to time-zero variability. Finally the last chapter focuses on the SRAM cells reliability and a method is developed to predict minimum operating voltage (Vmin) distributions of SRAM memory.

Identiferoai:union.ndltd.org:theses.fr/2014AIXM4753
Date05 December 2014
CreatorsAngot, Damien
ContributorsAix-Marseille, Bravaix, Alain
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds