Return to search

Développement de renfort 3D multiaxial tissé pour les structures de composite : technologie, modélisation et optimisation / Development of 3D multiaxis woven preforms for composite structures : technology, modelling and optimisation

La technologie de tissage 3D a été développée comme une réponse à la faible résistance au délaminage des structures de composite stratifiées en insérant des renforts fibreux dans l’épaisseur de la structure. Pourtant, cette technologie ne permet pas de positionner des fibres dans le plan autre que dans les directions à 0° et 90°. Cela implique de faibles résistances au cisaillement dans le plan. Pour cela une technologie de tissage 3D multiaxial a été développée permettant une insertion de fils dans d’autres orientations du plan. Dans cette thèse, une nouvelle technique dédié à produire des préformes 3D multiaxial tissées avec la possibilité de contrôler l’ordre des couches est présentée. Les paramètres des fils constitutifs et de la cellule unitaire des échantillons fabriqués sont mesurés avec l’investigation de la géométrie des fils (section et trajectoire) au sein de la structure. Associé à ces développements expérimentaux, un modèle géométrique, en tant qu’outil de conception permettant de décrire les préformes élaborées, a été développé. Cette modélisation géométrique permet de générer un VER, à l’échelle mésoscopique de la structure. Afin d’évaluer l’influence de ces préformes 3D sur les caractéristiques mécaniques, une chaîne numérique par éléments finis a été mise en place afin de calculer le comportement élastique équivalent. Les résultats sur les propriétés élastiques permettent de quantifier l’apport des fils dans le plan, comparativement aux structures 3D tissées. L’influence de l’ordre des couches dans l’épaisseur est également mis en évidence sur la minimisation des contraintes interlaminaires sur les dans le composite. / 3D weaving technology is developed in response to the poor delamination resistance of laminated composite structures by insertion through the thickness fiber reinforcements. However, this technology is limited relatively to a possibility to insert in-plane yarns oriented other than 0° and 90°. This results in reduction of the in-plane off axis tensile properties and the in-plane shear resistance. Therefore, 3D multiaxis weaving technology has been developed in order to enable this insertion. In the thesis, a novel technique able to produce 3D multiaxis woven preforms is presented with the possibility to control the sequencing of yarn layers. The constitutive yarns and unit cell parameters of the produced samples have been measured with investigation of yarns geometry (cross section shape and path) within the structure, by analyzing the captured micrographs for the samples cross section. Predictive geometrical model has been developed. This model is indispensable design tool providing approximate estimation of the geometrical properties of the dry preforms and composites. Moreover, a geometric modeling approach is improved helping to construct an RVE of this structure as accurate as possible based on the elaborated geometrical characterization. Based on the developed RVE, a mechanical modeling has been also improved and completed using the finite element method serving firstly, to evaluate the bias yarns effect on the elastic stiffness and in-plane off-axis properties in comparison with equivalent 3D orthogonal woven composite. Secondly, it helps to investigate the influence of the in-plane layers sequence on the induced interlaminare stresses at the composite free edges.

Identiferoai:union.ndltd.org:theses.fr/2014LIL10163
Date04 December 2014
CreatorsLabanieh, Ahmad Rashed
ContributorsLille 1, Koncar, Vladan, Legrand, Xavier
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0033 seconds