Pour tout entier naturel impair d, on construit un domaine fondamental pour l'action sur l'espace affine de dimension 2d+1 de certains groupes de transformations affines libres non abéliens, discrets, agissant proprement et de partie linéaire Zariski-dense dans SO(d+1, d). Pour tout groupe de Lie semisimple réel non compact G, on construit ensuite un groupe de transformations affines de son algèbre de Lie g qui est libre non abélien, discret, agit proprement sur g et a sa partie linéaire Zariski-dense dans Ad G. Enfin, on donne quelques résultats sur le comportement local des fonctions harmoniques sur le triangle de Sierpinski, plus précisément de leur restriction à un bord du triangle. / For every odd positive integer d, we construct a fundamental domain for the action on the 2d+1-dimensional space of certain groups of affine transformations which are free, nonabelian, act properly discontinuously and have linear part Zariski-dense in SO(d+1,d). Next for every semisimple noncompact real Lie group G, we construct a group of affine transformations of its Lie algebra g which is free, nonabelian, acts properly discontinuously and has linear part Zariski-dense in Ad G. Finally, we give some results about the local behavior of harmonic functions on the Sierpinski triangle restricted to a side of the triangle.
Identifer | oai:union.ndltd.org:theses.fr/2014PA112298 |
Date | 12 November 2014 |
Creators | Smilga, Ilia |
Contributors | Paris 11, Benoist, Yves |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image, StillImage |
Page generated in 0.0017 seconds