Return to search

Modélisation du comportement diffuso-mécanique d'un polymère semi-cristallin sous pression d'eau / Diffuso-Mechanical Modelling of Semicrystalline Polymer Under Water Pressure

La compréhension des couplages hydro-mécaniques pouvant influencer le comportement mécanique d’un polymère semi-cristallin (PSC) sous forte pression d’eau est à l’origine de ce travail de recherche.Afin de décrire des phénomènes de diffusion d’eau et leurs impacts sur le comportement mécanique du matériau lors d’un chargement multiaxial, l’influence des caractéristiques microstructurales sur le comportement diffuso-mécanique du matériau a été considérée dans la modélisation. Un modèle de comportement mécanique permettant de rendre compte du phénomène de cavitation généré par d’importantes déformations en traction et de l’évolution du comportement mécanique macroscopique vis-à-vis de la pression de confinement est ainsi couplé à un modèle de sorption dépendant de l’état microstructural du matériau. Une représentation multiphasique à différentes échelles est considérée : à une échelle ‘macroscopique’, le polymère cavité sous pression d’eau est assimilé à un milieu poreux constitué d’une phase solide (PSC) et une phase fluide (l’eau saturant les pores). A l’échelle du polymère, le comportement viscoplastique du PSC est modélisé à partir de la thermodynamique des milieux poreux, appuyé dans une représentation mésoscopique de sa microstructure, où le réseau cristallin interagit avec l’amorphe libre.Le modèle couplé a été implémenté dans un code de calcul par Eléments Finis. Les résultats de simulation démontrent la potentialité du modèle proposé, notamment sa capacité à capter des phénomènes de couplage entre la microstructure du matériau, la diffusion d’espèces et l’état de contraintes et déformations locales du matériau, permettant ainsi d’explorer des voies de compréhension des observations expérimentales. / Comprehension of the hydro-mechanical coupling affecting the mechanical behavior of a semicrystalline polymer (SCP) under high water pressure was the motivation of this research work.In order to describe the water diffusion phenomenon and its impact on the mechanical behavior of the SCP when multiaxial stresses are applied, the effect of the microstructure on the diffuso-mechanical behavior of the polymer was considered for modeling. A constitutive model including void nucleation and growth induced by large strains, and a dependence of the macroscopic mechanical behavior on hydrostatic pressure, is then coupled with a sorption model depending on the microstructure of the polymer.A multiphase representation at two scales is considered: at a ‘macroscopic’ scale, the cavitated SCP under water pressure is considered to be a saturated porous medium with the SCP as the solid phase, and the water saturating the voids as the fluid phase.At a lower scale, the viscoplastic behavior of the SCP has been modeled from the thermodynamics of porous media based on a meso-scale representation of its microstructure with the crystalline lamellae interacting with the free amorphous.The coupled model was implemented into a finite elements code. The simulation results demonstrate the potential of the proposed model, in particular its capability to take into account coupling phenomena between the microstructure of the material, species diffusion and the local state of stresses and strains which contributes to the comprehension of experimental observations.

Identiferoai:union.ndltd.org:theses.fr/2015ESMA0010
Date11 September 2015
CreatorsCastro Lopez, William Camilo
ContributorsChasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, Castagnet, Sylvie, Grandidier, Jean-Claude, Brusselle, Nadège, Lefebvre, Xavier
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds