• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 4
  • Tagged with
  • 15
  • 15
  • 15
  • 9
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation du comportement diffuso-mécanique d'un polymère semi-cristallin sous pression d'eau / Diffuso-Mechanical Modelling of Semicrystalline Polymer Under Water Pressure

Castro Lopez, William Camilo 11 September 2015 (has links)
La compréhension des couplages hydro-mécaniques pouvant influencer le comportement mécanique d’un polymère semi-cristallin (PSC) sous forte pression d’eau est à l’origine de ce travail de recherche.Afin de décrire des phénomènes de diffusion d’eau et leurs impacts sur le comportement mécanique du matériau lors d’un chargement multiaxial, l’influence des caractéristiques microstructurales sur le comportement diffuso-mécanique du matériau a été considérée dans la modélisation. Un modèle de comportement mécanique permettant de rendre compte du phénomène de cavitation généré par d’importantes déformations en traction et de l’évolution du comportement mécanique macroscopique vis-à-vis de la pression de confinement est ainsi couplé à un modèle de sorption dépendant de l’état microstructural du matériau. Une représentation multiphasique à différentes échelles est considérée : à une échelle ‘macroscopique’, le polymère cavité sous pression d’eau est assimilé à un milieu poreux constitué d’une phase solide (PSC) et une phase fluide (l’eau saturant les pores). A l’échelle du polymère, le comportement viscoplastique du PSC est modélisé à partir de la thermodynamique des milieux poreux, appuyé dans une représentation mésoscopique de sa microstructure, où le réseau cristallin interagit avec l’amorphe libre.Le modèle couplé a été implémenté dans un code de calcul par Eléments Finis. Les résultats de simulation démontrent la potentialité du modèle proposé, notamment sa capacité à capter des phénomènes de couplage entre la microstructure du matériau, la diffusion d’espèces et l’état de contraintes et déformations locales du matériau, permettant ainsi d’explorer des voies de compréhension des observations expérimentales. / Comprehension of the hydro-mechanical coupling affecting the mechanical behavior of a semicrystalline polymer (SCP) under high water pressure was the motivation of this research work.In order to describe the water diffusion phenomenon and its impact on the mechanical behavior of the SCP when multiaxial stresses are applied, the effect of the microstructure on the diffuso-mechanical behavior of the polymer was considered for modeling. A constitutive model including void nucleation and growth induced by large strains, and a dependence of the macroscopic mechanical behavior on hydrostatic pressure, is then coupled with a sorption model depending on the microstructure of the polymer.A multiphase representation at two scales is considered: at a ‘macroscopic’ scale, the cavitated SCP under water pressure is considered to be a saturated porous medium with the SCP as the solid phase, and the water saturating the voids as the fluid phase.At a lower scale, the viscoplastic behavior of the SCP has been modeled from the thermodynamics of porous media based on a meso-scale representation of its microstructure with the crystalline lamellae interacting with the free amorphous.The coupled model was implemented into a finite elements code. The simulation results demonstrate the potential of the proposed model, in particular its capability to take into account coupling phenomena between the microstructure of the material, species diffusion and the local state of stresses and strains which contributes to the comprehension of experimental observations.
2

Algorithmic Developments for a Multiphysics Framework

Wuilbaut, Thomas 17 December 2008 (has links)
In this doctoral work, we adress various problems arising when dealing with multi-physical simulations using a segregated (non-monolithic) approach. We concentrate on a few specific problems and focus on the solution of aeroelastic flutter for linear elastic structures in compressible fl ows, conjugate heat transfer for re-entry vehicles including thermo-chemical reactions and finally, industrial electro-chemical plating processes which often include stiff source terms. These problems are often solved using specifically developed solvers, but these cannot easily be reused for different purposes. We have therefore considered the development of a flexible and reusable software platform for the simulation of multi-physics problems. We have based this development on the COOLFluiD framework developed at the von Karman Institute in collaboration with a group of partner institutions. For the solution of fl uid fl ow problems involving compressible flows, we have used the Finite Volume method and we have focused on the application of the method to moving and deforming computational domains using the Arbitrary Lagrangian Eulerian formulation. Validation on a series of testcases (including turbulent flows) is shown. In parallel, novel time integration methods have been derived from two popular time discretization methods. They allow to reduce the computational effort needed for unsteady fl ow computations. Good numerical properties have been obtained for both methods. For the computations on deforming domains, a series of mesh deformation techniques are described and compared. In particular, the effect of the stiffness definition is analyzed for the Solid material analogy technique. Using the techniques developed, large movements can be obtained while preserving a good mesh quality. In order to account for very large movements for which mesh deformation techniques lead to badly behaved meshes, remeshing is also considered. We also focus on the numerical discretization of a class of physical models that are often associated with fluid fl ows in coupled problems. For the elliptic problems considered here (elasticity, heat conduction and electrochemical potential problems), the implementation of a Finite Element solver is presented. Standard techniques are described and applied for a variety of problems, both steady and unsteady. Finally, we discuss the coupling of the fluid flow solver with the finite element solver for a series of applications. We concentrate only on loosely and strongly coupled algorithms and the issues associated with their use and implementation. The treatment of non-conformal meshes at the interface between two coupled computational domains is discussed and the problem of the conservation of global quantities is analyzed. The software development of a flexible multi-physics framework is also detailed. Then, several coupling algorithms are described and assessed for testcases in aeroelasticity and conjugate heat transfer showing the integration of the fluid and solid solvers within a multi-physics framework. A novel strongly coupled algorithm, based on a Jacobian-Free Newton-Krylov method is also presented and applied to stiff coupled electrochemical potential problems.
3

Etude multi-échelle d'un écoulement fluide/poreux avec réaction hétérogène : application à la dépollution en textile lumineux photocatalytique / Multi-scale analysis of free and porous media flow with heterogeneous reaction : application to depollution within a light photocatalytic textile

Degrave, Robin 15 October 2015 (has links)
La photocatalyse est un procédé d’oxydation avancée et son utilisation est répandue dans le traitement de l’eau. Cette thèse traite de la dépollution d’eau au sein d’un réacteur original mettant en oeuvre un textile lumineux photocatalytique. Le textile est composé de fibres optiques parallèles situées sur une face d’un tissu fibreux. L’unité d’un tel système est assurée par des points de liage répartis périodiquement fixant les fibres optiques au tissu. Un traitement de microtexturation des fibres optiques permet la création d’une multitude de trous sur leur surface latérale. Une émission de lumière macroscopiquement homogène est provoquée lors de la connexion des fibres optiques à une lampe UV. Un dépôt de catalyseur, tel que le dioxyde de titane, sur l’intégralité du textile, conjuguée au rayonnement UV induit une activité photocatalytique. Cette thèse consiste à l’étude des phénomènes agissant dans un dispositif intégrant le textile lumineux photocatalytique. Dans ce réacteur plan modèle, le textile est confiné entre deux plaques et un écoulement unidirectionnel parallèle aux fibres optiques est mis en oeuvre. La dépollution d’un fluide par photocatalyse résulte du couplage de plusieurs mécanismes : écoulement, transport et réaction. Des modèles numériques sont ainsi développéssur un volume élémentaire représentatif du textile (appelé RVE) pour simuler la dépollution d’une eau comportant une molécule test, à l’échelle microscopique. Cette géométrie est choisie en tenant compte des caractéristiques structurelles du textile photocatalytique. La première étape est l’analyse de l’hydrodynamique au sein du textile, qui couple des écoulements fluide et en milieu poreux. Une étude expérimentale préliminaire a permis l’acquisition de données nécessaires à une représentation réaliste de l’écoulement en milieu poreux. Dans un second temps, le transport est caractérisé par une étude de la distribution des temps de séjour (DTS) au sein du réacteur. Des simulations successives utilisant des conditions aux limites pseudo-périodiques sont réalisées pour calculer numériquement la DTS. Elles sont validées par des mesures expérimentales de traçage de colorant. Enfin, la dégradation d’une molécule test est analysée expérimentalement et numériquement. L’étude numérique présente des approches macroscopique et microscopique. L’étude à l’échelle macroscopique permet de quantifier globalement les performances du réacteur et de fournir des valeurs de constantes cinétiques nécessaires aux simulations àl’échelle microscopique. Une analyse fine et précise de la dépollution est ainsi réalisée au sein du RVE. Elle montre les atouts et limitations du réacteur modèle en termes d’efficacité de dépollution et d’homogénéité de fonctionnement. Des propositions d’améliorations sont finalement émises, notamment une configuration de réacteur comportant un empilement de textiles photocatalytiques. / The photocatalysis is known as an advanced oxidation process and its use is common for the water treatment. This thesis deals with the water depollution within an original reactor integrating the UV-light photocatalytic textile. The textile is composed of parallel optical fibres located on a side of a fibrous fabric. The unity of the system is ensured by bonding points periodically distributed fixing the optical fibres to the fabric. A microtexturization treatment is applied to the optical fibres and a multitude of punctual light sources are thus created on their lateral surface. A light emission macroscopically homogeneous is provided by the connection of optical fibres to an UV lamp. The coating of catalyst, such as titanium dioxide, associated with UV irradiation generates photocatalytic activity. This thesis consists in studying phenomena which occurs within a setup containing the UV-light photocatalytic textile. In this model plane reactor, the textile is confined between two plates and a unidirectional flow parallel to optical fibres is applied. The fluid depollution results of the coupling between several mechanisms : fluid flow, transport and reaction. Numerical models are thus developed on a representative volume element of the textile (called RVE) to simulate at the microscopic scale the depollution of water containing a test molecule. This geometry is designed by taking account the structural characteristics of the photocatalytic textile. The first stage is the analysis of the hydrodynamic within the textile that combines free flow regions and porous medium flows. A preliminary experimental study allows the acquisition of data necessary to a realistic representation of the porous medium flow. Secondly, the transport is characterized by a study of the residence time distribution (RTD) within the reactor. Successive simulations using pseudo-periodic boundary conditions are performed to numerically calculate the RTD. They are validated by experimental measurements using dye tracing. Finally, the degradation of a test molecule is analysed experimentally and numerically. The numerical study presents both approaches macroscopic and microscopic. The study at the macroscopic scale allows to globally quantify the reactor performances. On the other hand, kinetic constants necessary to simulations at the microscopic scale are determined by fitting of the macroscopic model with experimental measurements. An accurate analysis is thus realized within the RVE. It points the advantages and limitations of the model reactor in terms of depollution efficiency and functioning homogeneity. Suggestions of structural improvement are proposed and especially a reactor integrating a stack of photocatalytic textiles.
4

Couplages multi-physiques : évaluation des impacts méthodologiques lors de simulations de couplages neutronique/thermique/mécanique. / Multi-physics couplings : methodology impact evaluation for neutron transport /heat transfer /mechanics coupling simulations.

Patricot, Cyril 22 March 2016 (has links)
L’objectif de cette thèse est l’étude des méthodes de couplage entre neutronique, thermique et mécanique. Après une revue générale des techniques de couplage, on s’est intéressé à la prise en compte de déformations mécaniques dans les simulations neutroniques. Les codes actuels de neutronique utilisant des méthodes déterministes ne sont généralement pas capables de traiter une géométrie déformée. Ce type de calcul a pourtant un intérêt fort pour la filière rapide et est un prérequis indispensable pour l’étude du couplage envisagée.Deux approches ont été identifiées et implémentées pour répondre à cette problématique, selon que l’on utilise un maillage de calcul mobile ou fixe. Elles ont été testées et confrontées sur les essais de gerbage du réacteur Phénix. Le couplage a été étudié ensuite, avec l’approche à maillage mobile, sur l’expérience Godiva qui présente un couplage à la fois conceptuellement simple et fort entre les physiques qui nous intéressent. Ces travaux ont permis de mettre en avant l’utilisation de la méthode de factorisation quasi-statique en neutronique qui permet de coupler efficacement un solveur de neutronique cinétique avec une autre discipline. Travail plus amont, le développement d’un solveur directement multiphysique a également été exploré. L’utilisation de l’algorithme de Newton sur les formes discrétisées des équations couplées a donné de bons résultats et semble être une approche généralisable à d’autres couplages.Cette thèse débouche ainsi à la fois sur une meilleure compréhension de la physique des cœurs déformés et sur des outils opérationnels pour leur simulation, mais aussi sur des recommandations très générales pour la mise en œuvre de calculs couplés. / The objective of this thesis is to study coupling techniques between neutron transport, heat transfer and mechanics. First, a very general review of coupling techniques in the literature was done. Then we worked on neutron transport simulations in wrapped cores. Most of current deterministic codes for neutron transport are not able to deal with deformed geometry. This kind of computations is however of special interest for fast neutrons reactors and is a prerequisite for our planned coupling study.Two approaches were identified and implemented to take into account core deformations, using respectively mobile and fixed meshing. They were tested and compared on the flowering tests of the reactor Phenix. The coupling itself was studied afterwards, on the Godiva experiment. It was chosen because of the direct, strong and time-dependent coupling it involves. On this case, the “quasi-static” factorization of neutron flux was shown to be an effective way to couple a space- and time-dependent neutron transport solver with another discipline. We also investigated the development of a unique multiphysics solver. The well-known Newton algorithm applied to the discretized forms of the coupled equations was shown to be an efficient tool, which could be generalized to other couplings.This thesis therefore leads, on the one hand, to a better understanding of the physics of deformed cores and to operational tools to simulate these effects, and on the other hand, to very general advices for multiphysics calculations.
5

Modélisation multi-échelle du comportement multi-physique des batteries lithium ion : application au gonflement des cellules. / Multiscale modeling of the multi-physics behavior of lithium ion batteries : application to swelling of cells.

Masmoudi, Moez 28 June 2019 (has links)
La batterie lithium ion est la technologie de stockage d’énergie la plus répandue dans l'industrie automobile. Assurer sa haute efficacité, sa puissance, sa capacité, sa sécurité et son endurance présente un défi pour plusieurs chercheurs et industriels. En effet, une batterie est un système complexe renfermant plusieurs composants et soumis à divers risques de dégradations d’origines chimiques, mécaniques et électriques, se manifestant même dans les conditions normales de fonctionnement. Cependant, la batterie devrait assurer ses fonctions pour un grand nombre de cycles de charge et de décharge et continuer à servir sans que ces dégradations influencent sa performance globale. L’une des dégradations principales et inévitables est son gonflement qui induit une discontinuité électrique et une perte de sa capacité.En effet, le gonflement est un phénomène multi-physique qui fait intervenir l’électrochimie, la mécanique et la thermique. D’une part, une batterie lithium-ion est basée sur l’échange réversible de l’ion lithium entre une électrode positive et une électrode négative. Le processus d’insertion de l’ion dans les particules de l’électrode aboutit à un changement volumique significatif réversible de la batterie pour chaque cycle de charge/décharge. Cette variation de volume mène à la formation de contraintes quand la batterie est maintenue dans un pack rigide empêchant ou limitant sa déformation. D’autre part, la formation d’une couche à l’interface particule-électrolyte (SEI) suite aux réactions parasites se produisant à l’échelle de l’électrode constitue une cause principale d’un gonflement supplémentaire irréversible et de vieillissement de la batterie.Ainsi, le gonflement doit être pris en compte pendant la phase du dimensionnement mécanique de la batterie. Il est donc indispensable d’avoir un outil numérique fiable capable de prédire ce comportement mécanique pendant toutes les phases de fonctionnement de la batterie et de permettre aux concepteurs d’améliorer sa structure.Ce travail rentre dans le cadre d’une collaboration entre l’ENSTA ParisTech et le constructeur automobile Renault suite à un besoin industriel de comprendre et de maîtriser le gonflement des batteries utilisées dans les véhicules électriques et hybrides. Pour répondre à ce besoin, un modèle multi-physique et multi-échelle fondé sur la théorie de la thermodynamique des processus irréversibles, sur l’endommagement et sur la théorie de l’homogénéisation est développé. Il permet de décrire et de prédire la déformation d’une batterie lithium ion pendant son fonctionnement. Le modèle tient compte des phénomènes mécaniques, électrochimiques et thermiques qui se produisent à l’échelle locale des électrodes afin de calculer la déformation mécanique au niveau macroscopique de la batterie. / Lithium ion battery is the most popular energy storage technology in the automotive industry. Ensuring high efficiency, power, capacity, safety and endurance is a challenge for many researchers and manufacturers. Indeed, a battery is a complex system containing several components and subject to various risks of chemical, mechanical and electrical damage, manifesting even under normal operating conditions. However, the battery should perform its functions for a large number of charge and discharge cycles and continue to serve without these risks influencing its overall performance. One of the main and inevitable damage is its swelling, which induces an electrical discontinuity and a loss of its capacity.Indeed, swelling is a multi-physics phenomenon that involves electrochemistry, mechanics and heat. On the one hand, a lithium-ion battery is based on the reversible exchange of the lithium ion between a positive electrode and a negative electrode. The process of inserting the ion into the particles of the electrode results in a significant reversible volume change of the battery for each charge / discharge cycle. This variation in volume leads to the formation of stresses when the battery is held in a rigid pack preventing or limiting its deformation. On the other hand, the formation of a layer at the particle-electrolyte interface (SEI) following parasitic reactions occurring at the electrode scale is a major cause of irreversible additional swelling and aging of the drums.Thus, the swelling must be taken into account during the mechanical sizing phase of the battery. It is therefore essential to have a reliable numerical tool able to predict this mechanical behavior during all phases of battery operation and to allow designers to improve its structure.This work is part of a collaboration between ENSTA ParisTech and the car manufacturer Renault following an industrial need to understand and control the swelling of batteries used in electric and hybrid vehicles. To meet this need, a multi-physics and multi-scale model based on the theory of the thermodynamics of irreversible processes, mechanical damage theory and the homogenization theory is developed. It allows to describe and predict the deformation of a lithium ion battery during its operation. The model takes into account the mechanical, electrochemical and thermal phenomena that occur at the local scale of the electrodes in order to calculate the mechanical deformation at the macroscopic level of the battery.
6

Aide à la conception des microsystèmes

Juillard, Jérôme 02 March 2007 (has links) (PDF)
Mes travaux ont pour but le développement de nouveaux outils de modélisation et de conception de capteurs MEMS, qui répondent aux problèmes intrinsèques aux MEMS (couplage multi-physique, non-linéarité, incertitudes) par des moyens adaptés. L'impossibilité de transposer directement des méthodes macroscopiques à un contexte MEMS motive une grande partie de mon travail.<br />Le présent texte a pour objectif d'exposer mes contributions aux domaines de la modélisation, de la simulation et de l'aide à la conception des MEMS. Il s'articule comme suit : <br />• Au premier chapitre, un panorama du domaine des MEMS et de leur physique est ébauché. Les difficultés dont il a été question plus haut y sont mises en relief.<br />• Le deuxième chapitre porte sur le traitement du couplage entre phénomènes physiques, dans un contexte de modélisation. Mes travaux de thèse y sont présentés. Ce chapitre aborde aussi le thème de la non-linéarité, inhérente à la physique des MEMS, dont le traitement, en simulation, s'apparente à celui du couplage.<br />• Le troisième chapitre montre comment les incertitudes et non-linéarités intrinsèques aux MEMS et les contraintes de la micro-électronique imposent le choix de certaines architectures de microsystèmes. Des méthodes d'identification à partir de données binaires, ainsi que plusieurs méthodes d'analyse des systèmes mixtes à comparateurs, y sont présentées. <br />• Enfin, au quatrième chapitre, je donne quelques pistes de développement de ces travaux.
7

Conception multidisciplinaire de microsystèmes autonomes

Dupé, Valérie 28 November 2011 (has links) (PDF)
Toute action naturelle crée de l'énergie perdue qui pourrait être exploitée pour alimenter nos appareils électriques et mobiles. Nos environnements physiques disposent d'un nombre élevé de micro-sources d'énergies ; certes chacune est de faible puissance, mais leur multiplicité pourrait s'avérer significative, notamment dans le cadre du fonctionnement de microsystèmes. C'est le principe précédent qui a conduit nos travaux sur la problématique de la conception de microsystèmes autonomes. Ainsi, pour être innovante, l'ingénierie de microsystèmes doit à la fois s'appuyer sur la culture de l'électronique, de la mécanique mais aussi de l'énergétique. Le processus de conception est fortement pluridisciplinaire et son efficacité réside dans la capacité à mettre en oeuvre des méthodologies et des outils : - de conception collaborative, - de capitalisation des connaissances techniques, - d'ingénierie multi-physique, - d'ingénierie intégrée. Sur le base de ces fondamentaux, nous avons développé un outil d'aide à la conception. La méthodologie sous-jacente permet : 1- l'analyse et la structuration d'un problème de conception d'un microsystème autonome : cette phase conduit l'identification, la description fonctionnelle et environnementale du système et de son environnement. 2- la modélisation des connaissances : une analyse architecturale conduit à la description des composants et des interactions liées au microsystème (directement ou indirectement) puis à la modélisation des comportements, 3- la qualification énergétique et le couplage physique : la réutilisation structurée des modèles de connaissances est pilotée pour coupler les modèles physiques et décrire les sources, les puits et les mécanismes énergétiques des environnements, 4- la conduite de la recherche de concepts innovants : la base de connaissances, les critères de qualification et la description fonctionnelle préalablement construits sont agencés dans une seule méthode de conception virtuelle pour rechercher des concepts de solutions innovants, 5- le pré-dimensionnement : tout en assurant l'intégration des outils spécialisés de simulation (méthode des éléments finis et simulation fonctionnelle), le prédimensionnement de microsystèmes autonomes est supportée selon un schéma synthétique, assurant un raisonnement abductif (ou bottom-up). La conjonction des raisonnements physiques, l'intégration des méthodes et des cultures métiers, l'exploration virtuelle des espaces de solutions et la modélisation constituent les bases d'un nouveau moyen d'aide à la conception de microsystèmes autonomes. Cette approche a été déployée pour la conception d'un capteur piézoélectrique autonome.
8

Développement d’une méthodologie de couplage multimodèle avec changements de dimension : validation sur un cas-test réaliste / Methodological development for model coupling with dimension heterogeneity : validation on a realistic test-case

Daou, Mehdi Pierre 27 September 2016 (has links)
Les progrès réalisés depuis plusieurs décennies, à la fois en termes de connaissances physiques, numériques et de puissance informatique disponible, permettent de traiter des simulations de plus en plus complexes. Les modélisations d'écoulements fluviaux et maritimes n'échappent pas à cette tendance. Ainsi, pour de très nombreuses applications de ce type, les modélisateurs doivent mettre en œuvre de véritables "systèmes de modélisation", couplant entre eux plusieurs modèles et logiciels, représentant différentes parties du système physique. La mise en place de tels systèmes permet de traiter de nombreuses études, comme par exemple les impacts de construction d'ouvrages d'art ou industriels, ou encore l'évaluation des aléas suite à un événement exceptionnel, etc.Dans le cadre de cette thèse, nous abordons cette problématique en utilisant une méthodologie de type Schwarz, empruntée à la théorie de décomposition de domaine, dont le principe est de ramener la résolution d'un problème complexe à celle de plusieurs sous-problèmes plus simples, grâce à un algorithme itératif. Ces méthodologies sont particulièrement bien adaptées au couplage de codes industriels puisqu'elles sont très peu intrusives.Cette thèse, réalisée dans le cadre d'un contrat CIFRE et grâce au financement du projet européen CRISMA, a été fortement ancrée dans un contexte industriel. Elle a été réalisée au sein d'Artelia en collaboration avec l'équipe AIRSEA du Laboratoire Jean Kuntzmann, avec pour objectif principal de transférer vers Artelia des connaissances et du savoir-faire concernant les méthodologies de couplage de modèles.Nous développons, dans le cadre de cette thèse, une méthodologie de couplage multi-modèles et de dimensions hétérogènes basée sur les méthodes de Schwarz, afin de permettre la modélisation de problématiques complexes dans des cas opérationnels (en complexifiant les problématiques étudiées au fur et à mesure de la thèse). Du point de vue industriel, les couplages mis en place sont fortement contraints par les logiciels utilisés répondant aux besoins d'Artelia (Telemac-3D, Mascaret, InterFOAM, Open-PALM).Nous étudions tout d'abord un couplage 1-D/3-D résolvant des écoulements à surface libre sous un même système de logiciel Telemac-Mascaret. L'avantage d'un tel couplage est une réduction de coût grâce à l'utilisation du modèle 1-D. Toutefois l’une des difficultés liées au changement de dimension réside dans la définition même de la notion de couplage entre des modèles de dimensions différentes. Ceci conduit à une solution couplée qui n’est pas définie d’une façon unique et qui dépend du choix des opérateurs d’interfaces.Puis nous nous intéressons au couplage monophasique/diphasique (1-D/3-D et 3-D/3-D) entre le système de logiciel Telemac-Mascaret et InterFOAM (modèle diphasique VOF), où la difficulté du choix des opérateurs d'interface lors du changement de physique (monophasique/diphasique) est aussi présente. Ce couplage a pour avantage de rendre possible la résolution d’écoulements complexes, que le système Telemac-Mascaret ne peut pas simuler (déferlement, lame d'eau, écoulement en charge, etc.) en utilisant localement InterFOAM avec son coût de calcul très important. Enfin, nous étudions l’application du couplage monophasique/diphasique sur un cas opérationnel d’étude d’ingénierie.Par ailleurs, les travaux effectués lors du projet CRISMA, pour le développement d'une application permettant de simuler les différents aspects d'une crise liée aux risques de submersions marines en Charente Maritime, coordonnés par Artelia, sont également présentés. Le projet CRISMA a pour objectif d'améliorer l'aide à la décision en se basant sur la simulation pour la gestion opérationnelle des situations de crise dans différents domaines du risque naturel et industriel (inondations, feux de forêt, pollutions accidentelles, etc.). / Progress has been performed for decades, in terms of physical knowledge, numerical techniques and computer power, that allows to address more and more complex simulations. Modelling of river and marine flows is no exception to this rule. For many applications, engineers have now to implement complex "modelling systems", coupling several models and software, representing various parts of the physical system. Such modelling systems allow addressing numerous studies, like quantifying the impacts of industrial constructions or highway structures, or evaluating the consequences of an extreme event.In the framwork of the present thesis, we address model coupling techniques using Schwarz's methodology, which is based on domain decomposition methods. The basic principle is to reduce the resolution of a complex problem into several simpler sub-problems, thanks to an iterative algorithm. These methods are particularly well suited for industrial codes, since they are very few intrusive.This thesis was realized within the framework of a CIFRE contract and thanks to the funding of the European CRISMA project and was thus greatly influenced by this industrial context. It was performed within the Artelia company, in collaboration with the AIRSEA team of the Jean Kuntzmann Laboratory, with the main objective of transferring to Artelia some knowledge and expertise regarding coupling methodologies.In this thesis, we develop a methodology for multi-model coupling with heterogeneous dimensions, based on Schwarz's methods, in order to allow modelling of complex problems in operational cases. From the industrial viewpoint, the developed coupled models must use software meeting Artelia's needs (Telemac-3D, Mascaret, InterFOAM, Open-PALM).We firstly study a testcase coupling 1-D and 3-D free surface flows, using the same software system Telemac-Mascaret. The advantage of such coupling is a reduction of the computation cost, thanks to the use of a 1-D model. However the change in the model dimension makes it difficult to define properly the notion of coupling, leading to a coupled solution which is not defined in a unique way but depends on the choice of the interface operators.Then we study a coupling case between a monophasic model and a diphasic model (1-D/3-D and 3-D/3-D), using Telemac-Mascaret and InterFOAM software systems. Once again, the main difficulty lies in the definition of interfaces operators, due to the change in the physics (monophasic / diphasic). Such a coupling makes it possible to solve complex flows that the Telemac-Mascaret system alone cannot address (breaking waves, water blade, closed-conduit flow, etc.), by locally using InterFOAM where necessary (InterFOAM is very expensive in terms of computations). Finally, we implement such a monophasic/diphasic coupling on an operational engineering study.In addition, we also present the work done during the CRISMA project. The overall objective of the CRISMA project was to develop a simulation-based decision support system for the operational crisis management in different domains of natural or industrial risks (floods, forest fires, accidental pollution, etc.). In this context, Artelia coordinated the development of an application allowing to simulate various aspects of crisis linked to flood risks in Charente-Maritime.
9

Développement de modèles neutroniques pour le couplage thermohydraulique du MSFR et le calcul de paramètres cinétiques effectifs / Development of neutronic models for the thermalhydraulics coupling of the MSFR and the calculation of effective kinetic parameters

Laureau, Axel 16 October 2015 (has links)
Le travail de cette thèse porte sur le développement de modèles neutroniques innovants pour le couplage avec la thermohydraulique, associant précision et temps de calcul raisonnable. Un des cas d'application principaux étant le réacteur à sel fondu, à spectre neutronique rapide et en cycle thorium MSFR (Molten Salt Fast Reactor), réacteur de 4ème génération à combustible liquide circulant, la prise en compte du mouvement des précurseurs de neutrons retardés et des phénomènes associés est nécessaire. Les études de conception de ce type de réacteur ont été le point de départ de ces développements, via le besoin d'une représentation multiphysique adaptée pour l'obtention d'une image globale et la réalisation d'études de transitoire.Dans un premier temps un couplage stationnaire a été développé, associant un modèle neutronique basé sur une approche stochastique, et un code de CFD (Computational Fluid Dynamics) résolvant les équations de Navier Stokes des écoulements turbulents ainsi que le transport des précurseurs de neutrons retardés. Ce modèle neutronique intègre l'effet lié au transport de ces précurseurs par une reconstruction de la gerbe prompte qu'ils génèrent. Cette approche dite par gerbe considère le réacteur critique comme un système sous-critique prompt amplifiant la source de neutrons retardés.Dans un second temps, un modèle neutronique basé sur une version temporelle des matrices de fission (Transient Fission Matrix ou TFM) a été développé afin de réaliser des études de transitoires. Le modèle TFM permet, en un premier calcul des matrices avec un code stochastique (MCNP, SERPENT), de réaliser une caractérisation de l'ensemble de la réponse neutronique spatiale et temporelle du réacteur avec une précision proche de celle du calcul Monte Carlo. Dans un second temps cette information est utilisée pour les calculs de transitoires tout en gardant un temps de calcul réduit. Le modèle TFM, utilisable pour différents types de systèmes, permet également le calcul de paramètres cinétiques effectifs tels que la fraction effective de neutrons retardés ou le temps de génération effectif. Différents cas d'application ont été utilisés afin de vérifier et d'illustrer cette approche sur des calculs temporels ou de paramètres cinétiques.Enfin le modèle TFM a été implémenté dans le code de thermohydraulique OpenFOAM. Ce couplage a été testé sur un benchmark numérique à géométrie simplifiée, puis des calculs sur le MSFR ont été réalisés, pour des transitoires normaux (suivis de charge) ou accidentels (insertions de réactivité, sur-refroidissements). / In this PhD thesis, we describe the development of innovative neutronic models for their coupling with thermalhydraulics such that they combine precision and reasonable computational times. One of the main cases where this method is applied is the Molten Salt Fast Reactor (MSFR) whose combines a fast neutron spectrum with a thorium cycle. In this fourth generation reactor, the motion of the delayed neutron precursors and the associated phenomena have to be taken into account due to the liquid fuel circulation. The starting point for these developments was the preliminary design of this type of system where a dedicated multi-physical representation was needed to study the reactor performance in steady and transient conditions.As a first step, a stationary coupling was developed. A neutronic model based on a stochastic approach was associated to a CFD (Computational Fluid Dynamics) code to solve the Navier Stokes equations for turbulent flows and the transport of the delayed neutron precursors. The impact of this precursor motion is taken into account by reconstructing the prompt shower that they generate. This approach, called by shower, views the critical reactor as a prompt subcritical reactor that amplifies a source of delayed neutrons.A second step consisted in developing a neutronic model based on a time dependent version of the fission matrices (Transient Fission Matrix or TFM) so as to enable reactor transient studies. With the TFM model, an initial computation of the matrices with a stochastic code (MCNP, SERPENT) allows the characterization of the global spatial and time dependent neutronic response of the reactor with a precision close to that of a Monte Carlo calculation. The information thus obtained is then used to calculate transients, while retaining the advantage of reduced computational time. The TFM model, which can be used for various system concepts, also allows the evaluation of effective kinetic parameters such as the effective fraction of delayed neutrons or the effective generation time. The method was applied to various cases in order to verify it and demonstrate the approach for time dependent or kinetic parameter calculations.Finally, the TFM model was integrated in the OpenFOAM thermalhydraulic code. The coupling was first tested on a simple geometry numerical benchmark. Subsequently, it was applied to the MSFR to calculate normal (load-following) and accidental (reactivity insertion, over-cooling) transients.
10

Développement d'une méthodologie de Quantification d'Incertitudes pour une analyse Mutli-Physique Best Estimate et application sur un Accident d’Éjection de Grappe dans un Réacteur à Eau Pressurisée / Development of an Uncertainty Quantification methodology for Multi-Physics Best Estimate analysis and application to the Rod Ejection Accident in a Pressurized Water Reactor

Delipei, Gregory 04 October 2019 (has links)
Durant les dernières décennies, l’évolution de la puissance de calcul a conduit au développement de codes de simulation en physique des réacteurs de plus en plus prédictifs pour la modélisation du comportement d’un réacteur nucléaire en situation de fonctionnement normal et accidentel. Un cadre d’analyse d’incertitudes cohérent avec l’utilisation de modélisations Best Estimate (BE) a été développé. On parle d’approche Best Estimate Plus Uncertain-ties (BEPU) et cette approche donne lieu `a de nombreux travaux de R&D à l’international en simulation numérique. Dans cette thèse, on étudie la quantification d’incertitudes multi-physiques dans le cas d’un transitoire d’ éjection de Grappe de contrôle (REA- Rod Ejection Accident) dans un Réacteur à Eau Pressurisée (REP). La modélisation BE actuellement disponible au CEA est réalisée en couplant les codes APOLLO3 R (netronique) et FLICA4 (thermohydraulique-thermique du combustible) dans l’environnement SALOME/CORPUS. Dans la première partie de la thèse, on examine différents outils statistiques disponibles dans la littérature scientifique dont la réduction de dimension, l’analyse de sensibilité globale, des modèles de substitution et la construction de plans d’expérience. On utilise ces outils pour développer une méthodologie de quantification d’incertitudes. Dans la deuxième partie de la thèse, on améliore la modélisation du comportement du combustible. Un couplage Best Effort pour la simulation d’un transitoire REA est disponible au CEA. Il comprend le code ALCYONE V1.4 qui permet une modélisation fine du comportement thermomécanique du combustible. Cependant, l’utilisation d’une telle modélisation conduit à une augmentation significative du temps de calcul ce qui rend actuellement difficile la réalisation d’une analyse d’incertitudes. Pour cela, une méthodologie de calibrage d’un modèle analytique simplifié pour le transfert de chaleur pastille-gaine basé sur des calculs ALCYONE V1.4 découplés a été développée. Le modèle calibré est finalement intégré dans la modélisation BE pour améliorer sa prédictivité. Ces deux méthodologies sont maquettées initialement sur un cœur de petite échelle représentatif d’un REP puis appliquées sur un cœur REP à l’échelle 1 dans le cadre d’une analyse multi-physique d’un transitoire REA. / The computational advancements of the last decades lead to the development of numerical codes for simulating the reactor physics with increa-sing predictivity allowing the modeling of the beha-vior of a nuclear reactor under both normal and acci-dental conditions. An uncertainty analysis framework consistent with Best Estimate (BE) codes was develo-ped in order to take into account the different sources of uncertainties. This framework is called Best Esti-mate Plus Uncertainties (BEPU) and is currently a field of increasing research internationally. In this the-sis we study the multi-physics uncertainty quantifi-cation for Rod Ejection Accident (REA) in Pressuri-zed Water Reactors (PWR). The BE modeling avai-lable in CEA is used with a coupling of APOLLO3 (neutronics) and FLICA4 (thermal-hydraulics and fuel-thermal) in the framework of SALOME/CORPUS tool. In the first part of the thesis, we explore different statistical tools available in the scientific literature including: dimension reduction, global sensitivity analy-sis, surrogate modeling and design of experiments. We then use them in order to develop an uncer-tainty quantification methodology. In the second part of the thesis, we improve the BE modeling in terms of its uncertainty representation. A Best Effort coupling scheme for REA analysis is available at CEA. This in-cludes ALCYONE V1.4 code for a detailed modeling of fuel-thermomechanics behavior. However, the use of such modeling increases significantly the compu-tational cost for a REA transient rendering the uncer-tainty analysis prohibited. To this purpose, we deve-lop a methodology for calibrating a simplified analytic gap heat transfer model using decoupled ALCYONE V1.4 REA calculations. The calibrated model is finally used to improve the previous BE modeling. Both de-veloped methodologies are tested initially on a small scale core representative of a PWR and then applied on a large scale PWR core.

Page generated in 0.4602 seconds