• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 7
  • 1
  • Tagged with
  • 65
  • 65
  • 65
  • 22
  • 21
  • 21
  • 18
  • 18
  • 17
  • 12
  • 10
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of computational methods for conjugate heat transfer analysis in complex industrial applications

Uapipatanakul, Sakchai January 2012 (has links)
Conjugate heat transfer is a crucial issue in a number of turbulent engineering fluidflow applications, particularly in nuclear engineering and heat exchanger equipment. Temperature fluctuations in the near-wall turbulent fluid lead to similar fluctuationsin the temperature of the solid wall, and these fluctuations in the solid cause thermalstress in the material which may lead to fatigue and finally damage. In the present study, the Reynolds Average Navier-Stokes (RANS) modelling approachhas been adopted, with four equation k−ε−θ2−εθ eddy viscosity based modelsemployed to account for the turbulence in the fluid region. Transport equations forthe mean temperature, temperature variance, θ2, and its dissipation rate, εθ, have beensimultaneously solved across the solid region, with suitable matching conditions forthe thermal fields at the fluid/solid interface. The study has started by examining the case of fully developed channel flow withheat transfer through a thick wall, for which Tiselj et al. [2001b] provide DNS dataat a range of thermal activity ratios (essentially a ratio of the fluid and solid thermalmaterial properties). Initial simulations were performed with the existing Hanjali´cet al. [1996] four-equation model, extended across the solid region as described above. However, this model was found not to produce the correct sensitivity to thermal activityratio of the near wall θ2 values in the fluid, or the decay rate of θ2 across the solid wall. Therefore, a number of model refinements are proposed in order to improve predictionsin both fluid and solid regions over a range of thermal activity ratios. These refinementsare based on elements from a three-equation non-linear EVM designed to bring aboutbetter profiles of the variables k, ε, θ2 and εθ near the wall , and their inclusion is shownto produce a good matching with the DNS data of Tiselj et al. [2001b].Thereafter, a further, more complex test case has been investigated, namely an opposedwall jet flow, in which a hot wall jet flows vertically downward into an ascendingcold flow. As in the channel flow case, the thermal field is also solved across the solidwalls. The modified model results are compared with results from the Hanjali´c modeland LES and experimental data of Addad et al. [2004] and He et al. [2002] respectively. In this test case, the modified model presents generally good agreement with the LESand experimental data in the dynamic flow field, particularly the penetration point ofthe jet flow. In the thermal field, the modified model also shows improvements in the θ2predictions, particularly in the decay of the θ2 across the wall, which is consistent withthe behaviour found in the simple channel flow case. Although the modified model hasshown significant improvements in the conjugate heat transfer predictions, in some instancesit was difficult to obtain fully-converged steady state numerical results. Thusthe particular investigation with the inlet jet location shows non-convergence numericalresults in this steady state assumption. Thus, unsteady flow calculations have beenperformed for this case. These show large scale unsteadiness in the jet penetration area. In the dynamic field, the total rms values of the modelled and mean fluctuations showgood agreement with the LES data. In the thermal field calculation, a range of the flowconditions and solid material properties have been considered, and the predicted conjugateheat transfer predicted performance is broadly in line with the behaviour shownin the channel flow.
2

Simulation of Combustion and Thermal-flow Inside a Petroleum Coke Rotary Calcining Kiln

Zhang, Zexuan 18 May 2007 (has links)
Calcined coke is the best material for making carbon anodes for smelting of alumina to aluminum. Calcining is an energy intensive industry and a significant amount of heat is wasted in the calcining process. Efficiently managing this energy resource is tied to the profit margin and survivability of a calcining plant. 3-D computational models are developed using FLUENT to simulate the calcining process inside the long slender kiln. Simplified models are employed to simulate the moving petocke bed with a uniform distribution of moisture evaporation, devolatilization, and coke fines entrainment rate with a conjugate radiation-convection-conduction calculation. The results show the 3-D behavior of the flow, the reaction inside the kiln, heat transfer and the effect of the tertiary air on coke bed heat transfer. The ultimate goals are to reduce energy consumption, recover waste-heat, increase thermal efficiency, and increase the product yield.
3

Aerodynamic and thermal modeling of effusion cooling systems in Large Eddy Simulation

Bizzari, Romain 05 November 2018 (has links) (PDF)
Numerical simulation is progressively taking importance in the design of an aero- nautical engine. However, concerning the particular case of cooling devices, the high number of sub-millimetric cooling holes is an obstacle for computational sim- ulations. A classical approach goes through the modelling of the effusion cooling by homogenisation. It allows to simulate a full combustor but failsin representing the jet penetration and mixing. A new approach named thickened-hole model was developed during this thesis to overcome this issue. A work on improving the mesh resolution onkey areas thanks to an automatic adaptive method is also presented, leading to a clear breakthrough. In parallel, as the flame tube temperature is a cornerstone for the combustor durability,a low-cost approach is proposed to predict it. To meet the time-constraints of design, it is based on thermal modelling instead of a direct thermal resolution.
4

High-Order Unsteady Heat Transfer with the Harmonic Balance Method

Knapke, Robert 05 June 2015 (has links)
No description available.
5

Numerical modelling of nonwoven thermal bonding process & machinery

Peksen, Murat January 2008 (has links)
Nonwoven-fabrics have been in use since 1930s. Their advantages over other web fonnation methods like knitting and weaving have attracted many industries such as aerospace, automotive, sports, geotextiles, composites, battery separators etc. to explore and increase their usage. During nonwoven manufacturing, most of the laid loose webs have an insufficient strength as fonned, and require an additional bonding procedure in order to provide the produced nonwoven with its intended properties. To achieve the desired properties of the nonwoven web, the bonding process is therefore, the most important part during production. The thennal bonding through air is one of the modem techniques which is incrementally improved to increase the yield of manufactured nonwoven properties. The system has a disadvantage which is, that the production capacity and energy efficiency is very low. The entitled research aims an industrial optimisation of the thermal bonding through air by entailing a strategic approach and encompassing the whole process chain of the thennal bonding process. The comprehensive and flexible optimisation opportunities provided by the CFD has been used to aid in the control and optimisation of the thermal bonding process and machinery. To optimise the process and product quality, the complex system composing of several components and various physical phenomena occurring during processing is simulated using a hierarchical methodology. More specifically a hierarchical decomposition procedure to recast the original multi scale problem as a sequence of three scale decoupled macro-, meso-, and micro scale subproblems is exploited. The methodology is applied in conjunction with the validation of experiments on through-air bonding product lines. 2D and 3D computational fluid dynamics (CFD) models based on the continuum modelling approach and the theory of porous media coupled with the theory of mixtures are developed to treat the flow behavior, heat transfer, phase change and air moisture transport within the whole through-air bonding system. The model is concluded to be an economic computational tool hence providing rapid process optimisation and valuable infonnation early in the process, which can replace costly experiments and ensure product consistency under variable process and climate conditions. 2D and 3D hybrid modelling considering parametric discrete and continuum parts is also perfonned using conjugate heat transfer analyses. The approach precisely permits the optimisation of the machine component design and the associated optimisation of consistent process and product properties.
6

Numerical Investigation On Cooling Of Small Form Factor Computer Cases

Orhan, Omer Emre 01 January 2007 (has links) (PDF)
In this study, cooling of small form factor computer is numerically investigated. The numerical model is analyzed using a commercial computational fluid dynamics software Icepak&trade / . The effects of grid selection, discretization schemes and turbulence models are discussed and presented. In addition, physical phenomena like recirculation and relaminarization are addressed briefly. For a comparison with the computational fluid dynamics results, an experiment is conducted and some temperature measurements are obtained from critical locations inside the chassis.The computational results were found to be in good agreement with the experimental ones.
7

Theoretical Investigation Of Conjugate Condensation Heat Transfer Inside Vertical Tubes

Kose, Serhat 01 September 2010 (has links) (PDF)
Based on the well-known theoretical studies related to the film condensation inside vertical tubes, a known temperature distribution is prescribed as boundary condition at the inner surface of the tube wall. But, in reality, there is a thermal interaction between the condensate fluid and conduction through the wall where the temperature variation along the inner surface of the tube wall is unknown and this unknown temperature profile should be determined by taking account of this interaction. In other words, the heat conduction equation for the tube wall and the energy equation for the condensate fluid flow should be coupled and solved simultaneously. Therefore, this type of problem is named &ldquo / conjugate condensation heat transfer problem&rdquo / . Subject to the conjugate condensation heat transfer problem in the industrial applications, there are two different fluid flows separated by a tube where the vapor flowing inside the tube condensates whereas the other one is heated and it flows externally in the counter current direction in the annular passages. Because of its fundamental and practical importance, in this doctoral thesis, the studies are focused on the analytical and numerical investigation of conjugate heat transfer due to the steam condensation inside vertical tubes which is cooled externally by a fluid flowing in the counter current direction. The unknown wall temperatures of the condenser tube, condensate liquid layer inside the tube and the turbulent coolant flow outside the tube are coupled. A computer code, named ZEC, containing condensation conjugate heat transfer model is developed in FORTRAN 90 Language. This code and the models it contains are assessed against the various experimental databases. The predictions of the code ZEC are found to reasonably agree with the experimental results over a wide range of conditions. Therefore, this developed code, ZEC, may be used for the preliminary design of in-tube condensers and for the performance evaluation of such condensers in operation.
8

Steady and Transient Heat Transfer for Jet Impingement on Patterned Surfaces

Dobbertean, Mark Michael 01 January 2011 (has links)
Free liquid-jet impingement is well researched due to its high heat transfer ability and ease of implementation. This study considers both the steady state and transient heating of a patterned plate under slot-free-liquid jet impingement. The primary working fluid was water (H2O) and the plate material considered was silicon. Calculations were done for Reynolds number (Re) ranging from 500 to 1000 and indentation depths from 0.000125 to 0.0005 m for three different surface configurations. The effect of using different plate materials and R-134a as the working fluid were explored for the rectangular step case. The distributions of the local and average heat-transfer coefficient and the local and average Nusselt number were calculated for each case. A numerical model based in the FIDAP computer code was created to solve the conjugate heat transfer problem. The model used was developed for Cartesian coordinates for both steady state and transient conditions. Results show that the addition of surface geometry alters the fluid flow and heat transfer values. The highest heat-transfer coefficients occur at points where the fluid flow interacts with the surface geometry. The lowest heat-transfer coefficients are found in the indentations between the changes in geometry. The jet velocity has a large impact on the heat transfer values for all cases, with increasing jet velocity showing increased local heat-transfer coefficients and Nusselt number. It is observed that increasing the indentation depth for the rectangular and sinusoidal surfaces leads to a decrease in local heat transfer whereas for triangular patterns, a higher depth results in higher heat-transfer coefficient. The transient analysis showed that changing surface geometry had little effect on the time required to reach steady state. The selection of plate material has an impact on both the final maximum temperatures and the time required to reach steady state, with both traits being tied to the thermal diffusivity (α) of the material.
9

Adiabatic and overall effectiveness in the showerhead of a film cooled turbine vane and effects of surface curvature on adiabatic effectiveness

Nathan, Marc Louis 08 February 2012 (has links)
Two sets of experiments were performed on a simulated turbine nozzle guide vane. First, adiabatic and overall effectiveness measurements were taken in the showerhead region of the vane using adiabatic and matched Biot vane models, respectively. Measurements of overall effectiveness in the showerhead region are not found in the literature, and are a useful baseline for validating the results of computational fluid dynamics (CFD) simulations. Overall effectiveness is useful because it shows the results of combining film cooling, internal convection, and surface conduction to provide a more complete picture of vane cooling than adiabatic effectiveness. An impingement plate was utilized to generate internal jet cooling. Momentum flux ratios were matched between the models and ranged from I*SH = 0.76 to 6.70, based on showerhead upstream approach velocity. The second set of experiments used a different model to examine the effects of surface curvature on adiabatic effectiveness. Results in open literature are found by varying the radius of curvature of a fixed setup, so the current approach was novel in that it looked at adiabatic effectiveness at locations of various curvature around the same vane. Blowing ratios from M = 0.4 to M = 1.6 were tested at a density ratio of DR = 1.20 for two locations on the suction side of the vane. Results were presented in terms of laterally averaged adiabatic effectiveness and contour plots of adiabatic effectiveness, and were compared to literature. / text
10

Development of an Impinging Receiver for Solar Dish-Brayton Systems

Wang, Wujun January 2015 (has links)
A new receiver concept utilizing impinging jet cooling technology has been developed for a small scale solar dish-Brayton system. In a typical impinging receiver design, the jet nozzles are distributed evenly around the cylindrical absorber wall above the solar peak flux region for managing the temperature at an acceptable level. The absorbed solar irradiation is partially lost to the ambient by radiation and natural convection heat transfer, the major part is conducted through the wall and taken away by the impingement jets to drive a gas turbine. Since the thermal power requirement of a 5 kWe Compower® micro gas turbine (MGT) perfectly matches with the power collected by the EuroDish when the design Direct Normal Irradiance (DNI) input is 800 W/m2, the boundary conditions for the impinging receiver design in this work are based on the combination of the Compower®MGT and the EuroDish system. In order to quickly find feasible receiver geometries and impinging jet nozzle arrangements for achieving acceptable temperature level and temperature distributions on the absorber cavity wall, a novel inverse design method (IDM) has been developed based on a combination of a ray-tracing model and a heat transfer analytical model. In this design method, a heat transfer model of the absorber wall is used for analyzing the main heat transfer process between the cavity wall outer surface, the inner surface and the working fluid. A ray-tracing model is utilized for obtaining the solar radiative boundary conditions for the heat transfer model. Furthermore, the minimum stagnation heat transfer coefficient, the jet pitch and the maximum pressure drop governing equations are used for narrowing down the possible nozzle arrangements. Finally, the curves for the required total heat transfer coefficient distribution are obtained and compared with different selected impinging arrangements on the working fluid side, and candidate design configurations are obtained. Furthermore, a numerical conjugate heat transfer model combined with a ray-tracing model was developed validating the inverse design method and for studying the thermal performance of an impinging receiver in detail. With the help of the modified inverse design method and the numerical conjugate heat transfer model, two impinging receivers based on sintered α-SiC (SSiC) and stainless steel 253 MA material have been successfully designed. The detailed analyses show that for the 253 MA impinging receiver, the average air temperature at the outlet and the thermal efficiency can reach 1071.5 K and 82.7% at a DNI level of 800 W/m2 matching the system requirements well. Furthermore, the local temperature differences on the absorber can be reduced to 130 K and 149 K for two different DNI levels, which is a significant reduction and improvement compared with earlier published cavity receiver designs. The inverse design method has also been verified to be an efficient way in reducing the calculation costs during the design procedure. For the validation and demonstration of the receiver designs, a unique experimental facility was designed and constructed. The facility is a novel high flux solar simulator utilizing for the first time Fresnel lenses to concentrate the light of 12 commercial high power Xenon-arc lamps. Finally, a prototype of a 253 MA based impinging was experimentally studied with the help of the 84 kWe Fresnel lens based high flux solar simulator in KTH. / <p>QC 20151123</p> / Optimised Microturbine Solar Power System , OMSOP

Page generated in 0.0881 seconds