• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computational and experimental study of film cooling performance including shallow trench configurations

Harrison, Katharine Lee 22 June 2015 (has links)
Film cooling computations and experiments were performed to study heat transfer and adiabatic effectiveness for several geometries. Various assumptions commonly made in film cooling experiments were computationally simulated to test the validity of using these assumptions to predict the heat flux into conducting walls. The validity of these assumptions was examined via computational simulations of film cooling on adiabatic, heated, and conducting flat plates using the commercial code FLUENT. The assumptions were found to be reasonable overall, but certain regions in the domain suffered from poor predictions. Film cooling adiabatic effectiveness and heat transfer coefficients for axial holes embedded in a 1 [hole diameter] transverse trench on the suction side of a simulated turbine vane were experimentally investigated as well to determine the net heat flux reduction. Heat transfer coefficients were determined with and without upstream heating both with and without a tripped boundary layer approach flow. The net heat flux reduction for the trench was found to be much higher than for the baseline row of holes. Two transverse trench geometries and a baseline row of holes geometry were also simulated using FLUENT and the results were compared to experiments by Waye and Bogard (2006). Trends between simulated trench configurations and baseline cylindrical holes without a trench were found to be largely in agreement with experimental trends, suggesting that FLUENT can be used as a tool for studying new trench configurations. / text
2

Adiabatic Effectiveness Measurements of Leakage Flows along the Hub Region of Gas Turbine Engines

Ranson, William Wayne 28 May 2004 (has links)
To prevent melting of turbine blades, numerous cooling schemes have been developed to cool the blades using cooler air from the compressor. Unfortunately, the clearance gap between adjacent hub sections allows coolant to leak into the hub region. Coolant flow also leaks into the hub region through gaps between individual stages. The results of a combined experimental and computational study of cooling along the hub of a first stage turbine blade caused by leakage flows are discussed in detail. Additionally, this study examines a novel cooling feature, called a microcircuit, which combines internal convective cooling with external film cooling. For the experimental investigation, scaled up blades were tested in a low speed wind tunnel. Adiabatic effectiveness measurements were made with infrared thermography of the entire hub region for a range of leakage flow conditions. For the computations, a commercially available computational fluid dynamics (CFD) code, FLUENT 6.0, was used to simulate the various flows. Results show that featherseal leakage flows provide small cooling benefits to the hub. Increases in featherseal flow provide no additional cooling to the hub region. Unlike the featherseal, leakage flows from the front rim provide ample cooling to the hub region, especially the leading edge of the blade passage. None of the leakage flows provide significant cooling to the pressure side region of the hub or trailing edge suction side. With the addition of the hub microcircuits, there is improved hub cooling of the suction side of the blades. Though the coolant exit uniformity was low and affected by the featherseal flow, the microcircuits were shown to provide more cooling along the hub region. Good agreements were observed between the computational and experimental results, though computations over-predicted front rim cooling and microcircuit uniformity. / Master of Science
3

Adiabatic and overall effectiveness in the showerhead of a film cooled turbine vane and effects of surface curvature on adiabatic effectiveness

Nathan, Marc Louis 08 February 2012 (has links)
Two sets of experiments were performed on a simulated turbine nozzle guide vane. First, adiabatic and overall effectiveness measurements were taken in the showerhead region of the vane using adiabatic and matched Biot vane models, respectively. Measurements of overall effectiveness in the showerhead region are not found in the literature, and are a useful baseline for validating the results of computational fluid dynamics (CFD) simulations. Overall effectiveness is useful because it shows the results of combining film cooling, internal convection, and surface conduction to provide a more complete picture of vane cooling than adiabatic effectiveness. An impingement plate was utilized to generate internal jet cooling. Momentum flux ratios were matched between the models and ranged from I*SH = 0.76 to 6.70, based on showerhead upstream approach velocity. The second set of experiments used a different model to examine the effects of surface curvature on adiabatic effectiveness. Results in open literature are found by varying the radius of curvature of a fixed setup, so the current approach was novel in that it looked at adiabatic effectiveness at locations of various curvature around the same vane. Blowing ratios from M = 0.4 to M = 1.6 were tested at a density ratio of DR = 1.20 for two locations on the suction side of the vane. Results were presented in terms of laterally averaged adiabatic effectiveness and contour plots of adiabatic effectiveness, and were compared to literature. / text
4

Parameters that affect shaped hole film cooling performance and the effect of density ratio on heat transfer coefficient augmentation

Boyd, Emily June 01 July 2014 (has links)
Film cooling is used in gas turbine engines to cool turbine components. Cooler air is bled from the compressor, routed internally through turbine vanes and blades, and exits through discrete holes, creating a film of coolant on the parts’ surfaces. Cooling the turbine components protects them from thermal damage and allows the engine to operate at higher combustion temperatures, which increases the engine efficiency. Shaped film cooling holes with diffuser exits have the advantage that they decelerate the coolant flow, enabling the coolant jets to remain attached to the surface at higher coolant flow rates. Furthermore, the expanded exits of the coolant holes provide a wider coolant distribution over the surface. The first part of this dissertation provides data for a new laidback, fan-shaped hole geometry designed at Pennsylvania State University’s Experimental and Computational Convection Laboratory. The shaped hole geometry was tested on flat plate facilities at the University of Texas at Austin and Pennsylvania State University. The objective of testing at two laboratories was to verify the adiabatic effectiveness performance of the shaped hole, with the intent of the data being a standard of comparison for future experimental and computational shaped hole studies. At first, measurements of adiabatic effectiveness did not match between the labs, and it was later found that shaped holes are extremely sensitive to machining, the material they are machined into, and coolant entrance effects. In addition, the adiabatic effectiveness was found to scale with velocity ratio for multiple density ratios and mainstream turbulence intensities. The second part of this dissertation measures heat transfer coefficient augmentation (hf/h0) at density ratios (DR) of 1.0, 1.2, and 1.5 using a uniform heat flux plate and the same shaped hole geometry. In the past, heat transfer coefficient augmentation was generally measured at DR = 1.0 under the assumption that hf/h0 was independent of density ratio. This dissertation is the first study to directly measure the wall and adiabatic wall temperature to calculate heat transfer coefficient augmentation at DR > 1.0. The results showed that the heat transfer coefficient augmentation was low while the jets were attached to the surface and increased when the jets started to separate. At DR = 1.0, hf/h0 was higher for a given blowing ratio than at DR = 1.2 and DR = 1.5. However, when velocity ratios are matched, better correspondence was found at the different density ratios. Surface contours of hf/h0 showed that the heat transfer was initially increased along the centerline of the jet, but was reduced along the centerline at distances farther downstream. The decrease along the centerline may be due to counter-rotating vortices sweeping warm air next to the heat flux plate toward the center of the jet, where they sweep upward and thicken the thermal boundary layer. This warming of the core of the coolant jet over the heated surface was confirmed with thermal field measurements. / text
5

Conjugate heat transfer effects on gas turbine film cooling : including thermal fields, thermal barrier coating, and contaminant deposition

Stewart, William Robb 07 October 2014 (has links)
The efficiency of natural gas turbines is directly linked to the turbine inlet temperature, or the combustor exit temperature. Further increasing the turbine inlet temperature damages the turbine components and limits their durability. Advances in turbine vane cooling schemes protect the turbine components. This thesis studies the conjugate effects of internal cooling, film cooling and thermal barrier coatings (TBC) on turbine vane metal temperatures. Two-dimensional thermal profiles were experimentally measured downstream of a single row of film cooling holes on both an adiabatic and a matched Biot number model turbine vane. The measurements were taken as a comparison to computational simulations of the same model and flow conditions. To improve computational models of the evolution of a film cooling jet as it propagates downstream, the thermal field above the vane, not just the footprint on the vane surface must be analyzed. This study expands these data to include 2-D thermal fields above the vane at 0, 5 and 10 hole diameters downstream of the film cooling holes. In each case the computational jets remained colder than the experimental jets because they did not disperse into the mainstream as quickly. Finally, in comparing results above adiabatic and matched Biot number models, these thermal field measurements allow for an accurate analysis of whether or not the adiabatic wall temperature was a reasonable estimate of the driving temperature for heat transfer. In some cases the adiabatic wall temperature did give a good indication of the driving temperature for heat transfer while in other cases it did not. Previous tests simulating the effects of TBC on an internally and film cooled model turbine vane showed that the insulating effects of TBC dominate over variations in film cooling geometry and blowing ratio. In this study overall and external effectiveness were measured using a matched Biot number model vane simulating a TBC of thickness 0.6d, where d is the film cooing hole diameter. This new model was a 35% reduction in thermal resistance from previous tests. Overall effectiveness measurements were taken for an internal cooling only configuration, as well as for three rows of showerhead holes with a single row of holes on the pressure side of the vane. This pressure side row of holes was tested both as round holes and as round holes embedded in a realistic trench with a depth of 0.6 hole diameters. Even in the case of this thinner TBC, the insulating effects dominate over film cooling. In addition, using measurements of the convective heat transfer coefficient above the vane surface, and the thermal conductivities of the vane wall and simulated TBC material, a prediction technique of the overall effectiveness with TBC was evaluated. / text
6

Large Eddy Simulation of Leading Edge Film Cooling: Flow Physics, Heat Transfer, and Syngas Ash Deposition

Rozati, Ali 21 December 2007 (has links)
The work presented in this dissertation is the first numerical investigation conducted to study leading edge film cooling with Large Eddy Simulation (LES). A cylindrical leading edge with a flat after-body represents the leading edge, where coolant is injected with a 30Ë compound angle. Three blowing ratios of 0.4, 0.8, and 1.2 are studied. Free-stream Reynolds number is 100,000 and coolant-to-mainstream density ratio is unity. At blowing ratio of 0.4, the effect of coolant inlet condition is investigated. Results show that the fully-turbulent coolant jet increases mixing with the mainstream in the outer shear layer but does not influence the flow dynamics in the turbulent boundary layer at the surface. As a result, the turbulent jet decreases adiabatic effectiveness but does not have a substantial effect on the heat transfer coefficient. At B.R.=0.4, three types of coherent structures are identified which consist of a primary entrainment vortex at the leeward aft-side of the coolant hole, vortex tubes at the windward side of the coolant hole, and hairpin vortices typical of turbulent boundary layers produced by the turbulent interaction of the coolant and mainstream downstream of injection. At B.R. = 0.8 and 1.2, coherent vortex tubes are no longer discernable, whereas the primary vortex structure gains in strength. In all cases, the bulk of the mixing occurs by entrainment which takes place at the leeward aft-side of the coolant jet. This region is characterized by a low pressure core and the primary entrainment vortex. Turbulent shear interaction between coolant jet and mainstream increases substantially with blowing ratio and contributes to the dilution of the coolant jet. As a result of the increased mixing in the shear layer and primary structure, adiabatic effectiveness decreases and heat transfer coefficient increases with increase in blowing ratio. The dissertation also investigates the deposition and erosion of Syngas ash particles in the film cooled leading edge region. Three ash particle sizes of 1, 5, and 10 microns are investigated at all blowing ratios using Lagrangian dynamics. The 1 micron particles with momentum Stokes number St = 0.03 (based on approach velocity and cylinder diameter), show negligible deposition/erosion. The 10 micron particles, on the other hand with a high momentum Stokes number, St = 3, directly impinge and deposit on the surface, with blowing ratio having a minimal effect. The 5 micron particles with St=0.8, show the largest receptivity to coolant flow and blowing ratio. On a mass basis, 90% of deposited mass is from 10 micron particles, with 5 micron particles contributing the other 10%. Overall there is a slight decrease in deposited mass with increase in blowing ratio. About 0.03% of the total incoming particle energy can potentially be transferred as erosive energy to the surface and coolant hole, with contribution coming from only 5 micron particles at B.R.=0.4 and 0.8, and both 5 and 10 micron particles at B.R.=1.2. / Ph. D.
7

Experimental measurements of conjugate heat transfer on a scaled-up gas turbine airfoil with realistic cooling configuration

Dees, Jason Edward 07 October 2010 (has links)
This study performed detailed measurements on and around scaled up conducting and adiabatic airfoils with and without film cooling. The conducting vane was a matched Bi airfoil, which accurately scaled the convective heat transfer and conduction through the solid, in order to produce non-dimensional surface temperatures and thermal boundary layers that were representative of an actual engine. Measurements made on all vane models included surface temperature measurements and thermal profiles above the walls. Separate measurements on non-film cooled and film cooled conducting models allowed for the individual contributions of the internal convective cooling and external film cooling to the overall cooling scheme to be quantified. Surface temperature and thermal field measurements above the wall were also performed on a film cooled adiabatic model. For the conducting model with internal cooling only, strong streamwise temperature variations were seen. The surface temperature variations were highly dependent on the local external and internal heat transfer coefficients. Spanwise temperature variations also existed, but were modest in comparison to streamwise variations. Comparing the thermal fields above the film cooled adiabatic and conducting walls allowed for the assumption that the conducting wall would not significantly affect the thermal field in the film cooling jet to be tested. Near the edge of the film cooling jet the developing thermal boundary layer had a clear effect on the overlying gas temperature, suggesting that the common assumption that the adiabatic wall temperature is the appropriate driving temperature for heat transfer to a film cooled wall was invalid. On the jet centerline thermal boundary layer effects were less influential, due to the development of a new, thin boundary layer. This suggested that the adiabatic wall temperature as driving temperature for heat transfer was a reasonable assumption on the jet centerline for most cases tested. As film cooling momentum flux ratio increase, thermal boundary layer effects became more influential on the jet centerline. Additionally, the high resolution surface temperature measurements and thermal field measurements above the wall presented in the current study represent a significant improvement in the data available for validation of computational simulations of conducting turbine airfoils. / text

Page generated in 0.0914 seconds