Return to search

Homéostasie du cuivre dans le chloroplaste : étude comparée de deux transporteurs de la famille des ATPases de type PIB / Copper homeostasis in chloroplasts : comparative study of two transporters belonging to the PIB- type ATPases family

Le cuivre est un métal de transition essentiel pour le fonctionnement des organismes vivants. Chez la plante Arabidopsis thaliana, la moitié du contenu en cuivre est localisé dans le chloroplaste. Cet organite, spécifique des cellules végétales, est constitué d'une enveloppe délimitant le stroma, un compartiment aqueux au sein duquel se trouve un système membranaire complexe, les thylacoïdes. Dans les chloroplastes d'Arabidopsis, le cuivre est le cofacteur de deux protéines essentielles : la superoxyde dismutase Cu/Zn, impliquée dans la défense contre des espèces réactives de l'oxygène au niveau du stroma et la plastocyanine, une protéine du lumen des thylacoïdes, impliquée dans la chaine de transfert des électrons photosynthétiques. Des études de génétique inverse ont démontré que le transport du cuivre à la plastocyanine impliquait deux protéines membranaires appartenant à la famille des ATPases-PIB-1 : HMA6, localisée dans l'enveloppe et HMA8, localisée dans la membrane des thylacoïdes. Une étude fonctionnelle in vitro a montré que HMA6 était un transporteur de haute affinité de cuivre monovalent présentant les caractéristiques générales des ATPases-P. Afin de comparer les propriétés enzymatiques de ces deux ATPases-PIB-1 et de mieux comprendre leur rôle respectif dans l'homéostasie du cuivre au sein du chloroplaste, nous avons déterminé in vitro les propriétés enzymatiques de HMA8.La stratégie employée pour la caractérisation de HMA8 a été similaire à celle utilisée pour la caractérisation de HMA6. Dans un premier temps, la sélectivité ionique de HMA8 a été évaluée à l'aide de tests phénotypiques dans la levure Saccharomyces cerevisiae. Les propriétés enzymatiques de HMA8 ont ensuite été déterminées in vitro après expression dans la bactérie Lactoccocus lactis, par des expériences de phosphorylation par l'ATP. Cette analyse a permis de démontrer que HMA8 présentait une plus forte affinité apparente pour le cuivre mais une activité catalytique plus lente que HMA6. L'analyse de modèles tridimensionnels de HMA6 et HMA8 a montré que ces différences pourraient être expliquées par des différences de charges au niveau de la cavité où le métal est libéré et/ou par la nature des partenaires interagissant avec ces ATPases. Ces différences pourraient expliquer les fonctions distinctes de ces deux transporteurs dans le chloroplaste : HMA6 régulerait la concentration en cuivre dans le stroma en interagissant avec différentes protéines cibles (notamment des chaperonnes à cuivre), alors que HMA8 aurait un rôle plus précis pour la distribution du cuivre à la plastocyanine.Pour mieux comprendre le mécanisme de libération du cuivre par HMA6 et HMA8, nous avons effectué une étude fonctionnelle de mutants de la région reliant les deux premières hélices transmembranaires (TMA et TMB). Dans cette étude, nous avons ciblé les cystéines et histidines qui de par leurs propriétés chimiques sont les résidus les plus à même d'interagir avec le métal. Les mutants d'intérêts ont été sélectionnés par criblage phénotypique dans la levure puis exprimés dans la bactérie L. lactis. La caractérisation biochimique in vitro de leurs propriétés enzymatiques a été réalisée par des tests de phosphorylation par l'ATP et le Pi. Cette étude nous a permis d'identifier deux résidus, une cystéine et une histidine, impliqués la libération du cuivre et de proposer un modèle de cheminement du métal dans la partie extracytoplasmique du site de transport de HMA6 / Copper is an essential transition metal for living organisms. In the plant Arabidopsis thaliana, half the copper content is localized in the chloroplast. This organelle specific of plant cells, consists of an envelope delimiting the stroma, an aqueous compartment within which there is a complex membrane system, the thylakoids. In chloroplasts of Arabidopsis, copper is the cofactor of two essential proteins: the superoxide dismutase Cu / Zn, involved in defense against reactive oxygen species in the stroma and plastocyanin, a protein of the thylakoid lumen involved in the chain transfer photosynthetic electron. Reverse genetics studies have demonstrated that copper transport in plastocyanin involved two membrane proteins belonging to the family of ATPases-PIB-1: HMA6, located in the envelope and HMA8, localized in the thylakoid membranes. A functional in vitro study showed that HMA6 was a monovalent high affinity copper transporter showing the general characteristics of P-ATPases. To compare the enzymatic properties of these two ATPases and better understand their respective role in copper homeostasis in the chloroplast, we in vitro determined the enzymatic properties of HMA8.The strategy employed for the characterization of HMA8 was similar to that used for the characterization of HMA6. Initially, the ion selectivity of HMA8 was evaluated using phenotypic tests in the yeast Saccharomyces cerevisiae. The enzymatic properties of HMA8 were then determined in vitro after expression in the bacterium Lactoccocus lactis, by phosphorylation experiments by ATP. This analysis demonstrated that HMA8 had a stronger apparent affinity for copper but a slower catalytic activity than HMA6. The analysis of three-dimensional models of HMA6 and HMA8 showed that these differences could be explained by differences in the electrostatic potential at the cavity where the metal is released and/or by the nature of the partners interacting with these ATPases. These differences might explain the distinct functions of the two carriers in the chloroplast: HMA6 would regulate the copper concentration in the stroma by interacting with various target proteins (including copper chaperone), while HMA8 would have a more specific role for the distribution of copper plastocyanin.To better understand the mechanism of copper release by HMA6 and HMA8, we conducted a functional study of mutants of the region connecting the first two transmembrane helices (TMA and TMB). In this study, we specifically targeted cysteines and histidines because of their chemical properties that make them very strong metal ligands. The mutants of interest were selected by phenotypic screening in yeast and then expressed in the bacterium L. lactis. The in vitro biochemical characterization of their enzymatic properties was carried out by phosphorylation tests by ATP and Pi. This study allowed us to identify two residues, one cysteine and one histidine, involved the release of copper and to propose a metal path model in extracytoplasmic part of the transport site of HMA6

Identiferoai:union.ndltd.org:theses.fr/2015GREAV050
Date14 October 2015
CreatorsSautron, Emeline
ContributorsGrenoble Alpes, Seigneurin-Berny, Daphné, Catty, Patrice
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.1312 seconds