Return to search

Characterization and fabrication of InGaN solar cells / Caractérisation et fabrication des cellules solaires à base d’InGaN

Ce projet a pour ambition de concevoir et de réaliser une nouvelle filière de cellule photovoltaïque utilisant la conversion directe de l’énergie solaire en électricité à base de la filière InGaN permettant d'atteindre un rendement de 50% de conversion directe de l’énergie solaire en électricité. Cette nouvelle approche constitue un défi technologique majeur pour la recherche académique et les applications industrielles dans les années avenir. Les cellules solaires actuelles à base de Silicium approchent leur limite théorique de rendement de conversion d’énergie (environ 25%). Les cellules solaires multi-jonctions permettent de repousser ces limites en empilant plusieurs matériaux possédant différentes énergies de bande interdite, chacun absorbant une petite portion du spectre solaire de manière plus efficace. Alors que les LEDs violettes et bleu à base du matériau InGaN sont déjà commercialisées, il apparaît essentiel de relever le défi qui consiste à fabriquer et utiliser ce matériau InGaN avec de fort taux d’Indium (i.e. des énergies de bandes interdites plus faibles) afin de couvrir l’ensemble du spectre solaire et ainsi réaliser des cellules photovoltaïques à très haut rendement, bien au-delà de l’état de l’art international. Au vu des limitations des cellules au silicium, des travaux théoriques ont montrés que des cellules à jonctions multiples à base de couches absorbantes d’InGaN permettraient d’atteindre un rendement de 50%. L’amélioration du rendement des cellules solaires aura un impact majeur sur de nombreuses applications. L’objectif de ce travail concerne la conception et de réalisation d'une nouvelle génération de cellule solaire à base d’InGaN. Ce travail concerne dans une première phase : la caractérisation du matériau InGaN à fort taux d’Indium (> 20%) élaboré à l'EPFL en collaboration avec l'IEMN ayant pour but de démontrer une énergie de bande interdite en dessous de 2 eV. Dans une seconde phase, après la validation électrique et structurelle de ce nouveau matériau, il s’agit de concevoir et de réaliser une nouvelle génération de cellule solaire mono-jonction sur saphir et sur substrat GaN. Cette nouvelle cellule solaire pourra être intégrée au sein d’une microsource d’énergie pour réseau de capteur autonome. / This PhD thesis reports on the structural and optical characterization of solar cell structures with various active region designs and different substrates as well as the subsequent fabrication and electrical characterization of InGaN solar cells. The epitaxial growth of solar cell designs with pGaN/i-InGaN/n-GaN structures were performed by metal-organic vapor phase epitaxy (MOCVD) by the company NovaGaN. The structural and optical characterization is assessed by X-Ray diffraction, scanning transmission electron microscopy, atomic force microscopy and photoluminescence spectroscopy. A structural comparison of solar cell designs including bulk 200 nm thick InGaN layer and InGaN/GaN multiple quantum wells (MQWs) with similar indium compositions (~30%) is presented. Furthermore, structural quality of designs with InGaN/GaN MQWs were analyzed with variation of the indium content, thickness of InGaN quantum wells and type of the substrate, i.e. (0001) sapphire or bulk GaN substrate. An optimized and reproducible processing has been developed for fabrication of InGaN based solar cells. The challenges in device processing such as mesa etching of GaN and contamination on the device sidewalls, which caused high reverse leakage currents were studied and solutions of using SiO2 mask and protection of sidewalls by SiO2 layers were proposed. An optimization study of thermal treatment of Ni/Au current spreading layer is also presented. The electrical activity in the active region and the spectral response of the solar cells are investigated by electron beam induced current (EBIC) analysis and external quantum efficiency measurements. EBIC analysis is used to clarify the origin of the S-shape behavior in illuminated current-voltage characteristics of the solar cell with 25×In0.15Ga0.85N/GaN MQWs, which has performed the best performance in this study with a conversion efficiency of 0.59% under 1sun illumination (AM1.5G).

Identiferoai:union.ndltd.org:theses.fr/2015LIL10123
Date26 November 2015
CreatorsDogmus, Ezgi
ContributorsLille 1, Haese-Rolland, Nathalie, Medjdoub, Farid
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0031 seconds