Return to search

Essai du traitement pré-clinique du carcinome hépatocellulaire sur la cirrhose dans le modèle de rat / Pre-trial of hepatocellular carcinoma on cirrhosis in a rat model

Hepatocellular carcinoma (HCC) is the second most common cause of cancerrelated mortality worldwide. AKT pathway has been found activated in 50% of HCC cases, making it promising target. Therefore we assess efficacy of the allosteric AKT inhibitor or the combination of Sorafenib with AKT inhibitor compared to untreated control and to standard treatment, Sorafenib, in vitro and in vivo. AKT inhibitor blocked phosphorylation of AKT in vitro and strongly inhibited cell growth with significantly higher potency than Sorafenib. Similarly, apoptosis and cell migration were strongly reduced by AKT inhibitor in vitro. To mimic human advanced HCC, we used diethylnitrosamine-induced cirrhotic rat model with fully developed HCC. MRI analyses showed that AKT inhibitor significantly reduced overall tumor size. Furthermore, number of tumors was decreased by AKT inhibitor, which was associated with increased apoptosis and decreased proliferation. Tumor contrast enhancement was significantly decreased in the AKT inhibitor group. Moreover, on tumor tissue sections, we observed a vascular normalization and a significant decrease in fibrosis in surrounding liver of animals treated with AKT inhibitor. Finally, pAKT/AKT levels in AKT inhibitor treated tumors were reduced, followed by down regulation of actors of AKT downstream signalling pathway: pmTOR, pPRAS40, pPLCγ1 and pS6K1. In conclusion, we demonstrated that AKT inhibitor blocks AKT phosphorylation in vitro and in vivo. In HCC-rat model, AKT inhibitor was well tolerated, showed anti-fibrotic effect and had stronger antitumor effect than Sorafenib. Our results confirm the importance of targeting AKT in HCC. / Hepatocellular carcinoma (HCC) is the second most common cause of cancerrelated mortality worldwide. AKT pathway has been found activated in 50% of HCC cases, making it promising target. Therefore we assess efficacy of the allosteric AKT inhibitor or the combination of Sorafenib with AKT inhibitor compared to untreated control and to standard treatment, Sorafenib, in vitro and in vivo. AKT inhibitor blocked phosphorylation of AKT in vitro and strongly inhibited cell growth with significantly higher potency than Sorafenib. Similarly, apoptosis and cell migration were strongly reduced by AKT inhibitor in vitro. To mimic human advanced HCC, we used diethylnitrosamine-induced cirrhotic rat model with fully developed HCC. MRI analyses showed that AKT inhibitor significantly reduced overall tumor size. Furthermore, number of tumors was decreased by AKT inhibitor, which was associated with increased apoptosis and decreased proliferation. Tumor contrast enhancement was significantly decreased in the AKT inhibitor group. Moreover, on tumor tissue sections, we observed a vascular normalization and a significant decrease in fibrosis in surrounding liver of animals treated with AKT inhibitor. Finally, pAKT/AKT levels in AKT inhibitor treated tumors were reduced, followed by down regulation of actors of AKT downstream signalling pathway: pmTOR, pPRAS40, pPLCγ1 and pS6K1. In conclusion, we demonstrated that AKT inhibitor blocks AKT phosphorylation in vitro and in vivo. In HCC-rat model, AKT inhibitor was well tolerated, showed anti-fibrotic effect and had stronger antitumor effect than Sorafenib. Our results confirm the importance of targeting AKT in HCC.

Identiferoai:union.ndltd.org:theses.fr/2016GREAV054
Date22 December 2016
CreatorsZeybek, Ayça
ContributorsGrenoble Alpes, İzmir Yüksek Teknoloji Enstitüsü (Izmir, Turquie), Marche, Patrice
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0018 seconds