Return to search

Étude théorique de l'anisotropie du transport thermique dans des nanostructures à base de silicium et de germanium / Theoretical study of the anisotropy of the thermal transport in silicon and germanium nanostructures

Le transport thermique dans les nanostructures semi-conductrices est un sujet de recherche très actuel, couvrant de larges domaines applicatifs dont l’auto-échauffement des composants nanoélectroniques et la conversion d’énergie par effet thermoélectrique. La modélisation du transport thermique à l’échelle nanométrique est complexe car la longueur des dispositifs devient du même ordre de grandeur que le libre parcours moyen des porteurs de chaleurs (phonons). L’hypothèse de pseudo-équilibre local n’est plus pertinente, de plus des effets de confinements peuvent aussi apparaitre. Il faut donc développer des outils de modélisation spécifiques.Pour prendre en compte les effets de confinement, j'ai calculé les relations de dispersions des phonons dans les nanostructures. Pour cela, j’ai mis en œuvre une méthode atomistique semi-empirique nommée ABCM (« Adiabadic Bond Charge Model »). J’ai pu ainsi calculer, dans l'ensemble de la zone de Brillouin (« Full Band »), la dispersion des phonons dans du silicium et du germanium en phase Zinc-Blende et aussi en phase Wurtzite.En outre, afin d’évaluer la résistance thermique d’interface, une extension originale du modèle « Acoustic Mismatch Model », entièrement « full-band », a été développée. Grâce à l’approche « Full-Band » la dépendance à l’orientation relative des cristaux de chaque côté de l’interface a été étudiée. Les effets d’orientations sur la transmission ont aussi été étudiés dans des nanofils polyphasés nouvellement synthétisés dans le laboratoire.En parallèle, pour étudier le transport des phonons, j'ai développé un simulateur Monte Carlo particulaire qui utilise les dispersions « Full-Band » calculées en ABCM. Ce type de simulateur est très polyvalent et permet de décrire l’ensemble des régimes de transports (du balistique au diffusif). De plus, comme il utilise une dispersion « Full-Band » les effets de confinement peuvent aussi être inclus. Ce simulateur m’a permis d’étudier les effets d’un changement d’orientation des plans cristallographiques du cristal sur la conductivité thermiques dans des nanofils de silicium et de germanium. J’ai ainsi évalué l’anisotropie du flux thermique dans ces nanostructures. / The heat transfer in semiconducting nanostructures is a current research topic, covering a wide range of applications including self-heating in nanoelectronic devices and energy conversion via thermoelectric effect. The modeling of heat transport at the nanometer scale is complex as the device length is in the same order of magnitude than the mean free path of heat carriers (phonons). The local pseudo-equilibrium assumption is no longer relevant, moreover confinement effects can also appear. Therefore development of specific modeling tools is highly desirable.To take into account the confinement effects, I have calculated the phonon dispersion relations in nanostructures. For this, I have implemented an atomistic semi-empirical method called ABCM (Adiabadic Bond Charge Model). I have calculated, in the entire Brillouin zone (Full Band approach), the dispersion relationship of phonons in both Silicon and Germanium for both Zinc-Blende and Wurtzite phases.In addition, to evaluate the thermal interface resistance, an original extension of the Acoustic Mismatch Model, completely full band, was developed. Within this approach, the dependence on the relative orientation of crystals has been studied in polytype nanowires that were recently synthesized in the laboratory.In parallel, to study the transport of phonons, I developed a particle Monte Carlo simulator that uses Full-Band dispersions calculated via ABCM. This kind of simulator is very versatile and can describe all transport regimes (from ballistic to diffusive one). Moreover, as it uses a "Full-Band" dispersion confinement effects can also be included. This simulator allowed me to study the effects of a change in orientation of the crystallographic planes on the thermal conductivity in both silicon and germanium nanowires. I have thus evaluated the anisotropy of the heat fluxes in these nanostructures.

Identiferoai:union.ndltd.org:theses.fr/2016SACLS001
Date15 January 2016
CreatorsLarroque, Jérôme
ContributorsUniversité Paris-Saclay (ComUE), Saint-Martin, Jérôme
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Image, StillImage

Page generated in 0.0029 seconds