Return to search

Electronic spin precession in all solid state magnetic tunnel transistor / Précession du Spin électronique dans un transistor tunel magnétique tout solide

Ce travail porte sur la précession du spin d’électrons chauds polarisés en spin. Celle-ci est induite par le champ d’échange d’une couche mince ferromagnétique dans une structure multicouche. La précession du spin électronique a déjà été mesurée dans des matériaux ferromagnétiques mais uniquement pour des électrons qui possèdent une énergie supérieure à 4eV au-dessus du niveau de Fermi. L’objectif premier de cette thèse est de mesurer la précession du spin de l’électron pour des faibles énergies, comprises entre 0.7eV et 2eV au-dessus du niveau de Fermi. Pour ce faire, un transistor tunnel magnétique comportant trois couches magnétiques avec les aimantations qui pointent dans les trois directions de l’espace doit être construit. Les électrons sont injectés à basse énergie grâce à une jonction tunnel. Une diode Schottky (interface entre du Cu et du Si) filtre en énergie les électrons incidents, permettant uniquement aux électrons balistiques de contribuer au courant mesuré dans le semi-conducteur. Le premier travail a consisté à obtenir une couche magnétique exhibant une anisotropie perpendiculaire. Ainsi, nous avons réussi à faire croître une multicouche de Co et Ni sur une diode Schottky qui possède une anisotropie perpendiculaire jusqu’à 5 répétitions. Le deuxième travail réalisé dans cette thèse était d’optimiser le magnéto-courant d’une la vanne de spin. En effet, le magnéto-courant détermine la sensibilité de notre transistor tunnel magnétique. Nous avons notamment démontré ici que le magnéto-courant augmente avec le nombre de répétitions de la multicouche [Co/Ni], pour atteindre quasiment le maximum de 100% théoriquement prédit dans une vanne de spin à aimantations croisées. Enfin, le troisième travail de cette thèse résidait dans l’étude de la précession du spin de l’électron dans différents matériaux ferromagnétiques. Cet effet a été mis en évidence ici pour des couches à aimantation planaire composée de Co, de CoFeB, ainsi que pour un alliage de CoAl et ceci en fonction de leur épaisseur / This work is about polarised hot electrons spin precession. This phenomenon is induced by the exchange field of a ferromagnetic thin film in a multilayer structure. The electronic spin precession has already been measured in ferromagnetic materials, but only for electrons whose energy is more than 4eV over the Fermi level. The initial aim of this PhD work is to measure the electron spin precession for weak energies, between 0.7 eV and 2eV over the Fermi level. In order to achieve that, a magnetic tunnel transistor composed of three magnetic layers with their magnetisations directions perpendicular to each other has to be elaborated. The electrons are injected at low energy by means of a tunnel junction. A Schottky diode (interface between Cu and Si) filters the incident electrons by their energies, which enables only ballistic electrons to contribute to the measured current in the semi-conductor. The first task consisted in obtaining a magnetic layer showing perpendicular magnetic anisotropy. We succeeded in growing cobalt nickel multilayers exhibiting a perpendicular magnetic anisotropy up to five repetitions. The second part of the job carried out during this PhD was to optimise the magneto-current of a spin valve. Indeed, it determines the magnetic tunnel transistor sensitivity. We have demonstrated that the magneto-current increases with the number of repetitions of the [Co/Ni] multilayer up to a maximum of nearly a hundred percent, which is the maximum theoretically predicted in a spin valve with crossed magnetisations. Eventually, the third task of this PhD was the study of the electron spin precession in various ferromagnetic materials. This effect has been evidenced here for thin layers with in-plane magnetisations composed of Co, CoFeB, and also for a CoAl alloy depending on the thickness of the layers

Identiferoai:union.ndltd.org:theses.fr/2017LORR0075
Date12 July 2017
CreatorsVautrin, Christopher
ContributorsUniversité de Lorraine, Hehn, Michel, Lacour, Daniel
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0023 seconds