Sélection de modèles statistiques par méthodes de vraisemblance pénalisée pour l'étude de données complexes / Statistical Model Selection by penalized likelihood method for the study of complex data

Cette thèse est principalement consacrée au développement de méthodes de sélection de modèles par maximum de vraisemblance pénalisée dans le cadre de données complexes. Un premier travail porte sur la sélection des modèles linéaires généralisés dans le cadre de données stratifiées, caractérisées par la mesure d’observations ainsi que de covariables au sein de différents groupes (ou strates). Le but de l’analyse est alors de déterminer quelles covariables influencent de façon globale (quelque soit la strate) les observations mais aussi d’évaluer l’hétérogénéité de cet effet à travers les strates.Nous nous intéressons par la suite à la sélection des modèles non linéaires à effets mixtes utilisés dans l’analyse de données longitudinales comme celles rencontrées en pharmacocinétique de population. Dans un premier travail, nous décrivons un algorithme de type SAEM au sein duquel la pénalité est prise en compte lors de l’étape M en résolvant un problème de régression pénalisé à chaque itération. Dans un second travail, en s’inspirant des algorithmes de type gradient proximaux, nous simplifions l’étape M de l’algorithme SAEM pénalisé précédemment décrit en ne réalisant qu’une itération gradient proximale à chaque itération. Cet algorithme, baptisé Stochastic Approximation Proximal Gradient algorithm (SAPG), correspond à un algorithme gradient proximal dans lequel le gradient de la vraisemblance est approché par une technique d’approximation stochastique.Pour finir, nous présentons deux travaux de modélisation statistique, réalisés au cours de cette thèse. / This thesis is mainly devoted to the development of penalized maximum likelihood methods for the study of complex data.A first work deals with the selection of generalized linear models in the framework of stratified data, characterized by the measurement of observations as well as covariates within different groups (or strata). The purpose of the analysis is then to determine which covariates influence in a global way (whatever the stratum) the observations but also to evaluate the heterogeneity of this effect across the strata.Secondly, we are interested in the selection of nonlinear mixed effects models used in the analysis of longitudinal data. In a first work, we describe a SAEM-type algorithm in which the penalty is taken into account during step M by solving a penalized regression problem at each iteration. In a second work, inspired by proximal gradient algorithms, we simplify the M step of the penalized SAEM algorithm previously described by performing only one proximal gradient iteration at each iteration. This algorithm, called Stochastic Approximation Proximal Gradient Algorithm (SAPG), corresponds to a proximal gradient algorithm in which the gradient of the likelihood is approximated by a stochastic approximation technique.Finally, we present two statistical modeling works realized during this thesis.

Identiferoai:union.ndltd.org:theses.fr/2017LYSEN097
Date12 December 2017
CreatorsOllier, Edouard
ContributorsLyon, Grenier, Emmanuel, Leclercq-Samson, Adeline
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench, English
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0022 seconds