Caractérisation d’interphase par des méthodes ultrasonores : applicationaux tissus péri-prothétiques / Interphase characterization by means of ultrasound methods : application to periprosthetic tissues

Cette thèse se concentre sur la caractérisation ultrasonore de l’interphase os-implant. Cette région est une zone de transition où a lieu le processus d’ostéointégration (i.e. le processus de guérison du tissu entourant l’implant). Donc, cette interphase a un rôle crucial dans l’ancrage à long-terme de l’implant, puisqu’elle dépend de la quantité ainsi que la qualité du tissu osseux environnant. Ensuite, en plus d’être un milieu complexe en remodelage continu, l’os néoformé présente une nature multi échelle et qui évolue dans le temps. Toutes ces motivations rendent la caractérisation de l’interphase os-implant critique et difficile. Dans ce contexte, les méthodes ultrasonores sont largement utilisées aujourd’hui dans le domaine clinique pour leur capacité de donner des informations sur les propriétés biomécaniques du tissu osseux. Compte tenu de ces éléments, dans le but de caractériser les propriétés mécaniques et microstructurales de l’interphase os-implant à travers des méthodes ultrasonores, il est important de développer et valider des modèles mécaniques ainsi que de méthodes de traitement du signal. A cause de la complexité du problème, afin de décrire avec précision le tissu environnant à l’implant, il est d’abord essentiel une modélisation fiable du tissu osseux. Pour cela, on étudie l’interaction entre une onde ultrasonore et le tissu osseux, en considérant aussi les effets dues à la microstructure. Pour ce faire, un modèle continu généralisé a été utilisé. Dans ce contexte, un test de transmission/réflexion réalisé sur un échantillon poroélastique immergé dans un fluide a renforcé la fiabilité du modèle. Les champs de pression réfléchi et transmis sont influencés par les paramètres de la microstructure. De plus, les résultats issus de l’analyse de dispersion sont en accord avec ceux observés dans les expériences pour les échantillons poroélastiques. Après, le problème a été compliqué en considérant une interphase qui se situe entre l’os et l’implant. Ainsi, on peut gérer la complexité ajoutée par la présence du tissu néoformé. Comme on l’a déjà mentionné, une difficulté additionnelle est représentée par le fait que l’interphase est un milieu hétérogène, un mélange de phases solides et fluides dont les propriétés évoluent avec le temps. Donc, afin de modéliser l’interaction des ondes ultrasonores avec une interphase, on a considéré dans le modèle une couche très fine avec des propriétés élastiques et inertielles. En partant de ça, on a étudié les effets des propriétés de réflexion d’une transition entre un milieu homogène et un milieu microstructuré. De même, il a aussi été étudié la caractérisation du milieu via des techniques avances de traitement du signal. En particulier, la réponse dynamique due à l’excitation ultrasonore du système os-implant a été analysée à travers une approche multifractale. Une première analyse basée sur les coefficients des ondelettes a montré une signature multifractale pour les signaux dérivants des simulations et aussi des expériences. Ensuite, une étude de sensibilité a aussi montré que la variation des paramètres tels que la fréquence centrale et la densité de l’os trabéculaire ne contribue pas à un changement dans la réponse. L’originalité réside dans le fait qu’il s’agit d’un des premiers efforts d’exploiter l’approche multifractale dans la propagation ultrasonore dans un milieu hétérogène / This thesis focus on the ultrasonic characterization of bone-implant interphase. This region is a transition zone where the osteointegration process (i.e. the healing process of the tissues surrounding the implant) takes place. Thus, this interphase is of crucial importance in the long-term anchorage of the implant, since it depends on the quantity and quality of the surrounding bone tissue. However, other than being a complex medium in constant remodeling, the newly formed bone presents a multiscale and time evolving nature. All these reasons make the characterization of the bone-implant interphase critical and difficult. In this context, ultrasound methods are nowadays widely used in the clinic field because of their ability to give information about the biomechanical properties of bone tissue. On this basis, with the aim of characterizing the mechanical and microstructural properties of the bone-implant interphase by ultrasound methods, it is important to develop and validate mechanical models and signal processing methods. Due to the complexity of the problem, in order to precisely describe the bone tissue surrounding the implant, first an accurate modelling of bone tissue is essential. Thus, the interaction between an ultrasonic wave and bone tissue has been investigated by also taking into account the effects dues to the microstructure. To do this, a generalized continuum modelling has been used. In this context, a transmission/reflection test performed on a poroelastic sample dipped in a fluid enhanced the reliability of the model. The reflected and transmitted pressure fields result to be affected by the microstructure parameters and the results coming from the dispersion analysis are in agreement with those observed in experiments for poroelastic specimens. Then, the problem has been complicated by considering the interphase taking place between the bone and the implant. In this way, we could handle the complexity added by the presence of the newly formed tissue. As already said, the fact that this interphase is a heterogeneous medium, a mixture of both solid and fluid phases whose properties evolve with time is an additional difficulty. Thus, in order to model the interaction of ultrasonic waves with this interphase, a thin layer with elastic and inertial properties has been considered in the model. The effects on the reflection properties of a transition between a homogeneous and a microstructured continuum have been investigated.Therefore, the characterization of the medium also via advanced signal processing techniques is investigated. In particular, the dynamic response due to the ultrasonic excitation of the bone-implant system is analyzed through the multifractal approach. A first analysis based on the wavelet coefficients pointed out a multifractal signature for the signals from both simulations and experiences. Then, a sensitivity study has also shown that the variation of parameters such as central frequency and trabecular bone density does not lead to a change in the response. The originality lies in the fact that it is one of the early efforts to exploit the multifractal approach in the ultrasonic propagation inside a heterogeneous medium

Identiferoai:union.ndltd.org:theses.fr/2018PESC1107
Date23 October 2018
CreatorsScala, Ilaria
ContributorsParis Est, Naili, Salah
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish, French
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0067 seconds