Return to search

Biogeography And Diversification In The Neotropics: Testing Macroevolutionary Hypotheses Using Molecular Phylogenetic Data

Lineage diversification in the Neotropics is an interesting topic in evolutionary biology and one of the least understood. The complexity of the region precludes generalizations regarding the historical and evolutionary processes responsible for the observed high diversity. Here, I use molecular data to infer evolutionary relationships and test hypotheses of current taxonomy, species boundaries, speciation and biogeographic history in several lineages of Neotropical snakes. I comprehensively sampled a widely distributed Neotropical colubrid snake and Middle American pitvipers and combined my data with published sequences. Within the colubrid genus Leptodeira, mitochondrial and nuclear markers revealed a phylogeograhic structure that disagrees with the taxonomy based only on morphology. Instead, the phylogenetic structure corresponds to specific biogeographic regions within the Neotropics. Molecular evidence combined with explicit divergence time estimates reject the hypothesis that highland pitvipers in Middle America originated during the climatic changes during the Pleistocene. My data, instead, shows that pitviper diversification occurred mainly during the Miocene, a period of active orogenic activity. Using multiple lineages of Neotropical snakes in a single phylogenetic tree, I describe how the closure of the Isthmus of Panama generated several episodes of diversification as opposed to the Motagua-Polochic fault in Guatemala where a single vicariant event may have led to diversification of snakes with different ecological requirements. This finding has implications for future biogeographic studies in the region as explicit temporal information can be readily incorporated in molecular clock analyses. Bridging the gap between the traditional goals of historical biogeography (i.e., area relationships) with robust statistical methods, my research can be applied to multiple levels of the biological hierarchy (i.e., above species level), other regional systems and other sub-disciplines in biology such as medical research, evolutionary ecology, taxonomy and conservation.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-5182
Date01 January 2010
CreatorsDaza Rojas, Juan Manuel
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.0024 seconds