Return to search

The aerodynamic losses with the addition of film cooling in a high-speed annular cascade

Turbine blade cooling techniques have been around for many years, and the addition of coolant into the turbine blade section will remain to be a viable cooling option for many years to come. Film cooling, which will be the main subject of this research, is a form of convection cooling where holes are placed through the surface of the metal components. With the addition of this film coolant into the main flow, an increased amount of total pressure loss will be found downstream. This is caused by the difference of flow momentum of the coolant and main flow when the two fluids are mixed.
The test rig used for the upcoming research will be the NASA-designed E3 rig. E3, standing for Energy Efficient Engine, was established to develop technology for improving the energy efficiency of future commercial transport aircraft engines. These engines were designed to provide real-world, actual test configurations in order to produce more efficient turbine engines, mainly to be used for propulsion. Tests were not focused just on heat transfer as its use will be, but with all aspects of the engine's components, especially aero. The annular cascade with 3-dimensional blade profiles as well as high Reynolds numbers make this setup an accurate test bed in which actual turbine conditions can be compared to.
The focus of this research is on the increased amount of total pressure loss seen downstream in an annular cascade with 3D blade profiles with the addition of inner endwall film cooling in a high-speed setting. Also, the rig setup of closed vs. open-loop and its effect on the inlet conditions as well as total pressure loss will be investigated.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:honorstheses1990-2015-2072
Date01 January 2010
CreatorsCasey, Timothy
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
SourceHIM 1990-2015

Page generated in 0.0792 seconds