Return to search

The dynamics of spanwise vorticity on a rotating flat plate in a starting motion

The initial rotation of flat, rectangular plates in quiescent flow were studied experimentally using two-dimensional and stereoscopic particle image velocimetry. The study examined the vortex dynamics of spanwise vorticity created on the upper, leeward surface of each plate of aspect ratio 2 and 4, which consists primarily of a leading-edge vortex. Reynolds numbers of 4,000, 8,000, and 16,000 based on the tip velocity and angles of attack of 25°, 35°, and 45° were investigated at five different azimuthal locations (90°, 180°, 235°, 270°, and 320°). The 25% and 50% spanwise positions for the aspect ratio 4 plate and 50% spanwise position for the aspect ratio 2 plate were studied. For the 25% and 50% spanwise location for the aspect ratio 4 and 2 plate, respectively, the leading-edge vortex structure's shape and coherence appear to be evolving temporally as the plate begins its initial motion. Leading-edge vortex circulation measurements confirm there is a non-monotonic trend showing increasing values until an azimuthal position of approximately 220° where there is a dip in the circulation values, but the circulation then rises towards the end of the range of azimuthal positions investigated. A strong region of counter-rotating vorticity was observed on the surface of the plate beneath the leading-edge vortex from the interaction of the leading-edge vortex with the plate. It was hypothesized that the interactions between the leading-edge vortex and counter-rotating vorticity are an important factor in governing the dynamics and strength of the leading-edge vortex which may ultimately determine whether the leading-edge vortex remains attached. To validate this claim, a transport analysis of the vorticity in the leading-edge vortex was developed to determine the contributions of spanwise flux, tilting of in-plane vorticity components, the shear layer, and annihilation has on the rate of change of circulation of the leading-edge vortex in the spanwise direction. Results of this analysis indicate that annihilation of the leading-edge vortex from entrainment of the counter-rotating vorticity is an important factor in governing the dynamics of the leading-edge vortex.

Identiferoai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-3159
Date01 May 2012
CreatorsWojcik, Craig James
ContributorsBuchholz, James H. J., 1974-
PublisherUniversity of Iowa
Source SetsUniversity of Iowa
LanguageEnglish
Detected LanguageEnglish
Typethesis
Formatapplication/pdf
SourceTheses and Dissertations
RightsCopyright © 2012 Craig James Wojcik

Page generated in 0.2471 seconds