• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 14
  • 13
  • 8
  • 6
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 130
  • 25
  • 24
  • 23
  • 22
  • 21
  • 19
  • 16
  • 14
  • 13
  • 13
  • 12
  • 11
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quasi-modes and the evolution of coherent planar vortices

Hall, Ian Melvyn January 2002 (has links)
No description available.
2

Dynamics of semi-discretised fluid flow

Davidson, Jonathan January 1995 (has links)
No description available.
3

On the relationship between deep circulation and a dynamical tracer over the global ocean

Day, Kate January 2001 (has links)
No description available.
4

A numerical study of vorticity-enhanced heat transfer

Wang, Xiaolin 21 September 2015 (has links)
In this work, we have numerically studied the effect of the vorticity on the enhancement of heat transfer in a channel flow. In the first part of the work, we focus on the investigation of a channel flow with a vortex street as the incoming flow. We propose a model to simulate the fluid dynamics. We find that the flow exhibits different properties depending on the value of four dimensionless parameters. In particularly, we can classify the flows into two types, active and passive vibration, based on the sign of the incoming vortices. In the second part of the work, we discuss the heat transfer process due to the flows just described and investigate how the vorticity in the flow improves the efficiency of the heat transfer. The temperature shows different characteristics corresponding to the active and passive vibration cases. In active vibration cases, the vortex blob improves the heat transfer by disrupting the thermal boundary layer and preventing the decay of the wall temperature gradient throughout the channel, and by enhancing the forced convection to cool down the wall temperature. The heat transxfer performance is directly related to the strength of the vortex blobs and the background flow. In passive vibration cases, the corresponding heat transfer process is complicated and varies dramatically as the flow changes its properties. We also studied the effect of thermal parameters on heat transfer performance. Finally, we propose a more realistic optimization problem which is to minimize the maximum temperature of the solids with a given input energy. We find that the best heat transfer performance is obtained in the active vibration case with zero background flow.
5

The role of latent heat release in an explosive extratropical cyclogenesis

Ahmadi-Givi, Farhang January 2001 (has links)
No description available.
6

Excitation of Low-Level Energy Wave Accumulations and Tropical Cyclone Formation

Long, Dana Marie 19 July 2005 (has links)
A spectral shallow water model is used at the 850 mb level to investigate the effects of cyclonic vorticity on heating in the lower troposphere and how this in turn causes an increase in cyclonic vorticity generation, creating a nonlinear vorticity feedback mechanism. The model is initialized with NCEP-NCAR reanalysis data from the period 1990-2003 and then used to simulate a heating forcing function centered in east Africa. The model is simulated using a Gaussian damped basic state, a zonally symmetric basic state, and a zero basic state. The heating forcing function is applied to these different basic states with a scaled mass sink to simulate heating in the atmosphere. The heating forcing function creates a vorticity feedback mechanism that increases cyclonic vorticity. The analysis of these different basic states shows that the Gaussian damped basic state reduces the amplitude of the observational fields at the poles, increases the observational fields in the tropical region and increases the stability of the model at shallow depths. The zero basic state does have a significant effect on cyclonic vorticity generation, but does not improve the capability of the wave to propagate westward into the Atlantic Ocean. The zonally symmetric basic state succeeds in increasing the amount of cyclonic vorticity generated. The zonally symmetric basic state, once the vorticity non-feedback region is extended, is also very effective at increasing the amount of cyclonic vorticity generated and increasing the propagation of this wave westward into the Atlantic Ocean. The analysis suggests that the vorticity feedback mechanism created by the heating forcing function is affected by cyclonic vorticity when a zero and zonally symmetric basic state are used.
7

The development of secondary frontal cyclones

Renfrew, Ian Alasdair January 1995 (has links)
No description available.
8

The dynamics of spanwise vorticity on a rotating flat plate in a starting motion

Wojcik, Craig James 01 May 2012 (has links)
The initial rotation of flat, rectangular plates in quiescent flow were studied experimentally using two-dimensional and stereoscopic particle image velocimetry. The study examined the vortex dynamics of spanwise vorticity created on the upper, leeward surface of each plate of aspect ratio 2 and 4, which consists primarily of a leading-edge vortex. Reynolds numbers of 4,000, 8,000, and 16,000 based on the tip velocity and angles of attack of 25°, 35°, and 45° were investigated at five different azimuthal locations (90°, 180°, 235°, 270°, and 320°). The 25% and 50% spanwise positions for the aspect ratio 4 plate and 50% spanwise position for the aspect ratio 2 plate were studied. For the 25% and 50% spanwise location for the aspect ratio 4 and 2 plate, respectively, the leading-edge vortex structure's shape and coherence appear to be evolving temporally as the plate begins its initial motion. Leading-edge vortex circulation measurements confirm there is a non-monotonic trend showing increasing values until an azimuthal position of approximately 220° where there is a dip in the circulation values, but the circulation then rises towards the end of the range of azimuthal positions investigated. A strong region of counter-rotating vorticity was observed on the surface of the plate beneath the leading-edge vortex from the interaction of the leading-edge vortex with the plate. It was hypothesized that the interactions between the leading-edge vortex and counter-rotating vorticity are an important factor in governing the dynamics and strength of the leading-edge vortex which may ultimately determine whether the leading-edge vortex remains attached. To validate this claim, a transport analysis of the vorticity in the leading-edge vortex was developed to determine the contributions of spanwise flux, tilting of in-plane vorticity components, the shear layer, and annihilation has on the rate of change of circulation of the leading-edge vortex in the spanwise direction. Results of this analysis indicate that annihilation of the leading-edge vortex from entrainment of the counter-rotating vorticity is an important factor in governing the dynamics of the leading-edge vortex.
9

Vorticity of Flow, Deformation Temperatures, and Strain Symmetry of the Moine Thrust Zone, NW Scotland: Constraining the Kinematic and Thermal Evolution of a Collisional Orogenic System

Thigpen, James Ryan 16 July 2009 (has links)
Examination of deformation temperature, flow vorticity, and strain symmetry in the Loch Eriboll, Loch More, and Assynt regions of the Moine thrust zone (MTZ) in northwest Scotland allows quantitative kinematic and thermal characterization of a crustal-scale shear zone at the base of the Scandian (435-425 Ma) orogenic wedge. Quartz crystal fabrics, kinematic vorticity (Wm), and strain estimates from the ductile thrust sheets in this region are used to determine how pure and simple shear components of deformation are partitioned, and indicate that these processes may be thermally, structurally, and lithologically dependent. Vorticity analysis of samples collected along strike in the MTZ and overlying Moine nappe indicate that Scandian thrusting and deformation involved a considerable pure shear component. Integrated strain and vorticity estimates indicate that significant sub-vertical foliation normal shortening has occurred as nappe stacking progressed. Along strike Wm variation could not be directly correlated with changes in footwall structural architecture, lithology, deformation temperatures, or structural depth and are thus interpreted to reflect local variability driven by a complex interplay of these and possibly other factors. Quartz c- and a-axis fabrics indicate that deformation in the footwall of the Moine thrust involved plane strain to general flattening strain with only a minor rotational (non-coaxial) component. In contrast, deformation in the Moine nappe was strongly non-coaxial, as indicated by asymmetric single girdle c-axis fabrics. Quartz c-axis opening angles and microstructures suggest that deformation temperatures increase from north to south and from structurally lower to structurally higher levels in the footwall to the Moine thrust. Vertical ductile thinning must be accommodated by either volume loss or extrusion of material towards the synorogenic topographic surface. Extrusion towards the synorogenic topographic surface implies a causal link between upper and lower crustal processes, with significant implications for the kinematic, geometric, and kinetic (deformation rates) evolution of the Scandian orogenic wedge. New thermobarometric and deformation temperature estimates are combined with structural and kinematic investigations to characterize the thermal structure of the Moine, Ben Hope, and related nappes. At the leading edge of the Moine thrust, subhedral garnets with prograde compositional growth zoning yield peak temperatures (grt-bio) of 440-492 °C at 4.5-6.0 kbars from Creagan Meall Horn to northern Assynt. Three samples collected at similar structural positions along the leading edge of the Moine nappe yield deformation temperatures of 420-460 °C, as determined from quartz c-axis opening angles. At the structurally highest position in the Moine nappe, garnet prograde compositional zoning profiles are preserved and samples yields P-T estimates of 565-571 °C (grt-bio) and 4.5-5.1 kbar (GRAIL barometer, minimum pressure due to absence of Al2SiO5 phase). Quartz c-axis fabrics of samples collected at similar structural positions yield deformation temperature estimates of 490-565 °C. In the structurally higher Ben Hope nappe, two phases of prograde compositional growth zoning are preserved in garnet bearing amphibolite near Portvasgo. The later outer garnet rim records P-T conditions of 655-672 °C at 3.9-5.1 kbars. The inverted metamorphic sequence from the Moine to the Naver thrust is mostly intact and is interpreted to be Scandian (435-420 Ma) in age. It is likely that the formation of this inverted sequence is due to a combination of progressive accretion of successively lower grade thrust sheets onto the base of the Scandian wedge and heating of the Moine and Ben Hope nappes from above by the relatively higher temperature migmatites of the Naver thrust. Vertical ductile thinning, in conjunction with erosion and normal faulting, likely led to rapid exhumation of the Scandian nappe pile and in turn preserved the inverted metamorphic sequence. / Ph. D.
10

Wall shear measurements in arterial flows

Etebari, Ali 11 May 2006 (has links)
Cardiovascular disease is responsible for the majority of morbidity and mortality in the United States. Physiologically healthy flow rarely displays turbulent behavior, thereby maintaining normal shear levels. The presence of vortical flow structures, however, alters the hemodynamical characteristics within the system, which has significant effect upon shear stress (SS) and wall shear stress (WSS) levels, as well as particle residence times. The relationship between these hemodynamic parameters and vascular injury response is of great relevance to understanding the cardiovascular disease process. In this work, new methods and algorithms are developed and presented for resolving, both globally and locally, the spatial and temporal variations of shear stress (SS) and WSS for in vitro models of the human cardiovascular system. Advancements in global measurements are based on improving the accuracy of SS and WSS estimation from time-resolved Digital Particle Image Velocimetry (DPIV) velocity measurements. A new velocity derivative method, the fourth-order noise-optimized compact-Richardson implicit scheme, has been developed, overcoming the obstacle of minimizing both the bias and random error in temporal/spatial derivative estimations. The resulting error is on the same order as the velocity measurement error for global measurements which results in an order of magnitude accuracy improvement. The method has been extended to WSS measurements, and combined with a new method of mirroring/reflecting a flow field over its boundary in order to achieve higher-order estimation. For moving boundaries an edge detection cross-correlation algorithm has been developed and characterized, yielding sub-pixel accuracy in measuring dynamic wall position prior to estimating WSS. An original microelectromechanical system (MEMS) WSS sensor capable of delivering high sensitivity, frequency response and accurate WSS measurements has been developed and characterized in this work. / Ph. D.

Page generated in 0.0416 seconds