• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 14
  • 13
  • 8
  • 6
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 130
  • 25
  • 24
  • 23
  • 22
  • 21
  • 19
  • 16
  • 14
  • 13
  • 13
  • 12
  • 11
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Flow structure and vorticity transport on a plunging wing

Eslam Panah, Azar 01 May 2014 (has links)
The structure and dynamics of the flow field created by a plunging flat plate airfoil are investigated at a chord Reynolds number of 10,000 while varying plunge amplitude and Strouhal number. Digital particle image velocimetry measurements are used to characterize the shedding patterns and the interactions between the leading and trailing edge vortex structures (LEV and TEV), resulting in the development of a wake classification system based on the nature and timing of interactions between the leading- and trailing-edge vortices. The convection speed of the LEV and its resulting interaction with the TEV is primarily dependent on reduced frequency; however, at Strouhal numbers above approximately 0.4, a significant influence of Strouhal number (or plunge amplitude) is observed in which LEV convection is retarded, and the contribution of the LEV to the wake is diminished. It is shown that this effect is caused by an enhanced interaction between the LEV and the airfoil surface, due to a significant increase in the strength of the vortices in this Strouhal number range, for all plunge amplitudes investigated. Comparison with low-Reynolds-number studies of plunging airfoil aerodynamics reveals a high degree of consistency and suggests applicability of the classification system beyond the range examined in the present work. Some important differences are also observed. The three-dimensional flow field was characterized for a plunging two-dimensional flat-plate airfoil using three-dimensional reconstructions of planar PIV data. Whereas the phase-averaged description of the flow field shows the secondary vortex penetrating the leading-edge shear layer to terminate LEV formation on the airfoil, time-resolved, instantaneous PIV measurements show a continuous and growing entrainment of secondary vorticity into the shear layer and LEV. A planar control volume analysis on the airfoil indicated that the generation of secondary vorticity produced approximately one half the circulation, in magnitude, as the leading-edge shear layer flux. A small but non-negligible vorticity source was also attributed to spanwise flow toward the end of the downstroke. Preliminary measurements of the structure and dynamics of the leading-edge vortex (LEV) are also investigated for plunging finite-aspect-ratio wings at a chord Reynolds number of 10,000 while varying aspect ratio and root boundary condition. Stereoscopic particle image velocimetry (SPIV) measurements are used to characterize LEV dynamics and interactions with the plate in multiple chordwise planes. The relationship between the vorticity field and the spanwise flow field over the wing, and the influence of root boundary conditions on these quantities has been investigated. The viscous symmetry plane is found to influence this flow field, in comparison to other studies \cite{YiRo:2010,Vi:2011b,CaWaGuVi:2012}, by influencing tilting of the LEV near the symmetry wall, and introducing a corewise root-to-tip flow near the symmetry plane. Modifications in the root boundary conditions are found to significantly affect this. LEV circulations for the different aspect ratio plates are also compared. At the bottom of the downstroke, the maximum circulation is found at the middle of the semi-span in each case. The circulation of the $sAR=2$ wing is found to significantly exceed that of the $sAR=1$ wing and, surprisingly, the maximum circulation value is found to be independent of root boundary conditions for the $sAR=2$ case and also closely matched that of the quasi-2D case. Furthermore, the 3-D flow field of a finite wing of $sAR=2$ was characterized using three-dimensional reconstructions of planar PIV data after minimizing the gap between the plunging plate and the top stationary wall. The LEV on the finite wing rapidly evolved into an arch structure centered at approximately the 50\% spanwise position, similar to previous observations by Calderon et al. \cite{CaWaGu:2010}, and Yilmaz and Rockwell \cite{YiRo:2010}. At that location, the circulation contribution due to spanwise flow was approximately half that of the shear layer flux because of the significantly greater three-dimensionality in the flow. Increased tilting at the 25\% and 75\% spanwise locations suggests increasing three-dimensionality at those locations compared to the symmetry plane of the arch (50\% spanwise location). The deviation between the LEV circulation and integrated convective vorticity fluxes at the 50\% spanwise location suggests that entrainment of secondary vorticity plays a similar role in regulating LEV circulation as in the 2D case. While the wing surface flux of vorticity could not be measured in that case, the significant difference between LEV circulation and the known integrated fluxes is comparable to that for the 2D plate, suggesting that a significant boundary flux of secondary vorticity may exist.
42

Flow structure in the wake of a low-aspect-ratio wall-mounted bluff body

Hajimirzaie, Seyed Mohammad 01 May 2013 (has links)
The effects of shape and relative submergence (the ratio of flow depth to obstacle height, d/H) were investigated on the wakes around four different low-aspect-ratio wall-mounted obstacles: semi-ellipsoids with the major axes of the base ellipses aligned in the streamwise and transverse directions, two cylinders with aspect ratios matching the ellipsoids. Wake structure of a fully submerged, spherical obstacle was also investigated in the same flow conditions to provide insight into the flow obstacle interaction with ramification to sediment transport. A low-aspect-ratio semi-ellipsoid was chosen as broad representative of a freshwater mussel projecting from a river bed, and a sphere was employed as representative of a boulder. Two cylinders were used due to their similarity to geometries investigated in other studies. Digital Particle Image Velocimetry and thermal anemometry were used to interrogate the flow. For ellipsoids and cylinders, streamwise features observed in the mean wake included counter-rotating distributions of vorticity inducing downwash (tip structures), upwash (base structures), and horseshoe vortices. In particular, the relatively subtle change in geometry produced by the rotation of the ellipsoid from the streamwise to the transverse orientation resulted in a striking modification of the mean streamwise vorticity distribution in the wake. Tip structures were dominant in the former case while base structures were dominant in the latter. A vortex skeleton model of the wake is proposed in which arch vortex structures, shed from the obstacle, are deformed by the competing mechanisms of Biot-Savart self-induction and the external shear flow. An inverse relationship was observed between the relative submergence and the strength of the base structures for the ellipsoids, with a dominant base structure observed for d/H = 1 in both cases. The wake of the sphere is more complex than ellipsoidal geometries. Streamwise features observed in the mean wake including tip, horseshoe structures, and weak upwash. The shedding characteristics and dynamics of the wake were examined. Weak symmetric shedding was observed in the wakes of streamwise and transverse ellipsoids at d/H = 3.9 while cross-spectral measurements confirmed downstream and upstream tilting of arch structures shed by the transverse and streamwise ellipsoids, respectively. Much weaker peaks in the power spectrum were observed for low- and high-aspect-ratio cylinders. While the dominant Strouhal number remained constant as the relative submergence was reduced to d/H = 2.5 for the ellipsoids, it increased abruptly at d/H = 1 and transitioned to an antisymmetric mode. For sphere geometry at d/H = 3.9, a weak dominant frequency was observed close to obstacle junction and the cross-correlation function for symmetric measurements in the wake indicates symmetric shedding. These results demonstrate a means by which to achieve significant modifications to flow structure and transport mechanisms in the flow.
43

Kinematic evolution of the Homestake and Slide Lake shear zones, central Colorado: Implications for mid-crustal deformation during the Mesoproterozoic

Lee, Patricia Elizabeth 01 May 2011 (has links)
Kinematic analysis and field mapping of the Homestake shear zone (HSZ) and Slide Lake shear zone (SLSZ) in central Colorado provide new evidence for strain partitioning in the mid-crust at ~1.4 Ga. The northeast-striking, steeply dipping HSZ comprises a ~10-km-wide set of anastomosing ductile shear zones and pseudotachylyte-bearing faults. Approximately 3-km south of the HSZ, the north-northeast-striking, shallowly dipping mylonites of the SLSZ form three 1-10-m-thick shear zone splays. Both top-up-to-the-northwest and top-down-to-the-southeast shear sense are recorded in the SLSZ and HSZ. Oblique stretching lineations in both shear zones show vertical (top-down-to-the-southeast and top-up-to-the-northwest) and dextral movement occurred during mylonite development. Quartz and feldspar deformation mechanisms and quartz [c] axis lattice preferred orientation (LPO) patterns are consistent with deformation temperatures ranging from ~280-500°C in the HSZ to ~280-600°C in the SLSZ. Mean kinematic vorticity and quartz [c] axis LPOs for parts of each shear zone suggest plane and non-plane strain general shear with contributions of 47-69% pure shear and 31-53% simple shear. Based on micro- and mesoscale kinematics along with mean kinematic vorticity values and deformation temperature estimates, we propose that HSZ and SLSZ formed during strain localization and partitioning within a mid-crustal transpressional shear zone system that involved subvertical shuffling at ~1.4 Ga.
44

Experimental Investigation Of Near And Far Field Flow Characteristics Of Circular And Non-circular Turbulent Jets

Tasar, Gursu 01 December 2008 (has links) (PDF)
The atomization problem of high speed viscous jets has many applications in industrial processes and machines. In all these applications, it is required that the droplets have high surface area/volume ratio meaning that the droplets should be as small as possible. This can be achieved with high rates of turbulence and mixing of the flow. In order to constitute a foresight of geometry eects on droplet size, experimental investigation and the determination of flow characteristics in near and far fields of a low-speed air jet have been performed. In order to fulfill this task, three components of instantaneous velocity are measured, using a triple sensor Constant Temperature Anemometer (CTA) system. Through these measurements, mean velocity, Reynolds stress, velocity decay, spreading rate, turbulent kinetic energy, vorticity, and mass entrainment rate values are obtained. Stress-Strain relationship is also observed. Measurements are obtained for a baseline circular nozzle (round jet) as well as for an equilateral triangular and a square nozzle. On the basis of these measurements, the equilateral triangular jet is found to be the best option in order to get highest turbulence and mixing level with smallest core length.
45

The multiple vortex nature of tropical cyclogenesis

Sippel, Jason Allen 17 February 2005 (has links)
This thesis contains an observational analysis of the genesis of Tropical Storm Allison (2001). Using a paradigm of tropical cyclone formation as the superposition of potential vorticity (PV) anomalies, the importance of different scales of PV merger to various aspects of Allison’s formation is discussed. While only the case of Allison is discussed in great detail, other studies have also documented PV superposition on various scales, and superposition could be important for most tropical cyclones. Preceding Allison’s genesis, PV superposition on the large scale destabilized the atmosphere and increased low-level cyclonic vorticity. This presented a more favorable environment for the formation of MCV-type PV anomalies and smaller, surface-based, meso-β-scale vortices. Although these vortices eventually merged to form a more concentrated vortex with stronger surface pressure gradients, the merger happened well after landfall of Allison and no strengthening ensued. The unstable, vorticity-rich environment was also favorable for the development of even smaller, meso-γ-scale vortices that accompanied deep convective cells within one of Allison’s meso-β-scale vortices. The observations herein suggest that the meso-γ- scale convective cells and vortices are the respective source of PV production and building blocks for the meso-β-scale vortices. Finally, this thesis discusses issues related to the multiple vortex nature of tropical cyclone formation. For instance, the tracking of developing tropical cyclones is greatly complicated by the presence of multiple vortices. For these cases, the paradigm of a single cyclone center is inappropriate and alternative tracking methods are introduced.
46

Computational study of a NACA4415 airfoil using synthetic jet control

Lopez Mejia, Omar Dario 24 March 2011 (has links)
Synthetic jet actuators for flow control applications have been an active topic of experimental research since the 90’s. Numerical simulations have become an important complement of that experimental work, providing detailed information of the dynamics of the controlled flow. This study is part of the AVOCET (Adaptive VOrticity Control Enabled flighT) project and is intended to provide computational support for the design and evaluation of closed-loop flow control with synthetic jet actuators for small scale Unmanned Aerial Vehicles (UAVs). The main objective is to analyze active flow control of a NACA4415 airfoil with tangential synthetic jets via computational modeling. A hybrid Reynolds-Averaged Navier-Stokes/Large Eddy Simulation (RANS/LES) turbulent model (called Delayed Detached-Eddy Simulation-DDES) was implemented in CDP, a kinetic energy conserving Computational Fluid Dynamics (CFD) code. CDP is a parallel unstructured grid incompressible flow solver, developed at the Center for Integrated Turbulence Simulations (CITS) at Stanford University. Two models of synthetic jet actuators have been developed and validated. The first is a detailed model in which the flow in and out of the actuator cavity is modeled. A second less costly model (RSSJ) was also developed in which the Reynolds stress produced by the actuator is modeled, based on information from the detailed model. Several static validation test cases at different angle of attack with modified NACA 4415 and Dragon Eye airfoils were performed. Numerical results show the effects of the actuators on the vortical structure of the flow, as well as on the aerodynamic properties. The main effect of the actuation on the time averaged vorticity field is a bending of the separation shear layer from the actuator toward the airfoil surface, resulting in changes in the aerodynamic properties. Full actuation of the suction side actuator reduces the pitching moment and increases the lift force, while the pressure side actuator increases the pitching moment and reduces the lift force. These observations are in agreement with experimental results. The effectiveness of the actuator is measured by the change in the aerodynamic properties of the airfoil in particular the lift ([Delta]C[subscript t]) and moment ([Delta]C[subscript m]) coefficients. Computational results for the actuator effectiveness show very good agreement with the experimental values (over the range of −2° to 10°). While the actuation modifies the global pressure distribution, the most pronounced effects are near the trailing edge in which a spike in the pressure coefficient (C[subscript p]) is observed. The local reduction of C[subscript p], for both the suction side and pressure side actuators, at x/c = 0.96 (the position of the actuators) is about 0.9 with respect to the unactuated case. This local reduction of the pressure is associated with the trapped vorticity and flow acceleration close to the trailing edge. The RSSJ model is designed to capture the synthetic jet time averaged behavior so that the high actuation frequencies are eliminated. This allows the time step to be increased by a factor of 5. This ad hoc model is also tested in dynamic simulations, in which its capacity to capture the detail model average performance was demonstrated. Finally, the RSSJ model was extended to a different airfoil profile (Dragon Eye) with good results. / text
47

Data Assimilation In Systems With Strong Signal Features

Rosenthal, William Steven January 2014 (has links)
Filtering problems in high dimensional geophysical applications often require spatially continuous models to interpolate spatially and temporally sparse data. Many applications in numerical weather and ocean state prediction are concerned with tracking and assessing the uncertainty in the position of large scale vorticity features, such as storm fronts, jets streams, and hurricanes. Quantifying the amplitude variance in these features is complicated by the fact that both height and lateral perturbations in the feature geometry are represented in the same covariance estimate. However, when there are sufficient observations to detect feature information like spatial gradients, the positions of these features can be used to further constrain the filter, as long as the statistical model (cost function) has provisions for both height perturbations and lateral displacements. Several authors since the 1990s have proposed various formalisms for the simultaneous modeling of position and amplitude errors, and the typical approaches to computing the generalized solutions in these applications are variational or direct optimization. The ensemble Kalman filter is often employed in large scale nonlinear filtering problems, but its predication on Gaussian statistics causes its estimators suffer from analysis deflation or collapse, as well as the usual curse of dimensionality in high dimensional Monte Carlo simulations. Moreover, there is no theoretical guarantee of the performance of the ensemble Kalman filter with nonlinear models. Particle filters which employ importance sampling to focus attention on the important regions of the likelihood have shown promise in recent studies on the control of particle size. Consider an ensemble forecast of a system with prominent feature information. The correction of displacements in these features, by pushing them into better agreement with observations, is an application of importance sampling, and Monte Carlo methods, including particle filters, and possibly the ensemble Kalman filter as well, are well suited to applications of feature displacement correction. In the present work, we show that the ensemble Kalman filter performs well in problems where large features are displaced both in amplitude and position, as long as it is used on a statistical model which includes both function height and local position displacement in the model state. In a toy model, we characterize the performance-degrading effect that untracked displacements have on filters when large features are present. We then employ tools from classical physics and fluid dynamics to statistically model displacements by area-preserving coordinate transformations. These maps preserve the area of contours in the displaced function, and using strain measures from continuum mechanics, we regularize the statistics on these maps to ensure they model smooth, feature-preserving displacements. The position correction techniques are incorporated into the statistical model, and this modified ensemble Kalman filter is tested on a system of vortices driven by a stochastically forced barotropic vorticity equation. We find that when the position correction term is included in the statistical model, the modified filter provides estimates which exhibit substantial reduction in analysis error variance, using a much smaller ensemble than what is required when the position correction term is removed from the model.
48

Numerical simulation of oil spills in coastal areas using shallow water equations in generalised coordinates

Novelli, Guillaume 24 November 2011 (has links)
The pollution generated by accidental marine oil spills can cause persistent ecological disasters and lead to serious social and economical damages. Numerical simulations are a valuable tool to make proper decisions in emergency situation or to plan response actions beforehand. The main objective of this work was to improve SIMOIL, a computational model developed earlier at URV and capable of predicting the evaporation and spreading of massive oil spills in coastal areas. Specifically, a new coastal current model, based on the resolution of the shallow water equations in generalised coordinates, has been developed and validated and then coupled to SIMOIL. The model was specially designed to describe coastal oceanic flows over topography accounting for Coriolis force, eddy viscosity, seabed friction and to couple with SIMOIL in domain with complex boundaries. The equations have been discretized over generalised domains by means of finite differences of second order accuracy. The code was then implemented in FORTRAN. The code has been validated extensively against numerical and experimental flow studies of the bibliography. Finally, the new complete version of SIMOIL, coupling the shallow water model and the oil slick model, has been applied to the study of two accidental oil spills: • A massive leakage from the Repsol's floating dock in the port of Tarragona • The biggest oil spill ever occurred in the Eastern Mediterranean Sea: the 2006 Lebanon oil spill. In both cases, the new version of SIMOIL, demonstrate more accurate predictions of the behaviour of the oil spill, specially for moderate winds with complex topography. / La contaminación generada por los vertidos accidentales de petróleo puede ser reducida si se actúa y si se toman las decisiones adecuadas a tiempo. Las simulaciones numéricas de vertidos de petróleo permiten predecir la evolución de las manchas de crudo. En este trabajo, el objetivo principal era de mejorar la precisión y el rango de aplicación del código SIMOIL desarrollando e integrando al código un modelo de predicción de corrientes marinas en aguas costeras. Se han derivado las ecuaciones de aguas poco profundas en coordenadas generalizadas. Se han discretizado las ecuaciones y el código se implementó en FORTRAN 90. El modelo así como los métodos numéricos han sido validados con el estudio de flujos experimentales y numéricos de la bibliografía. Finalmente, la nueva versión de SIMOIL se aplicó con éxito a dos casos físicos de vertidos de crudo: • un vertido ficticio desde la monoboya de descarga de Repsol en el puerto de Tarragona • un vertido real, el mas grande ocurrido en el Este del mar Mediterráneo, consecuencia de la guerra en Líbano en julio de 2006. En ambos casos la nueva versión de SIMOIL proporcionó predicciones más precisas, especialmente para vientos moderados y topografías complejas.
49

Investigation of the Flow Topology around a Simplified Two-wheel Landing Gear with Emphasis on the Stagnation Point

Feltham, Graham 22 November 2013 (has links)
Experiments were conducted in a recirculating water channel to determine the flow topology around a simplified two-wheel landing gear model. Both hydrogen bubble visualization and Particle Image Velocimetry techniques were employed. The Reynolds number based on wheel diameter was 32,500. The general flow topology was characterized for several wheel configurations. Previously undiscovered structures have been found in several regions of the flow field, and their behavior was found to depend strongly on the geometry of the wheels. The phenomena of vorticity amplification near the stagnation point of the wheels was also studied. Weak upstream vorticity was found to collect, grow, and amplify into large coherent structures which then shed in a regular manner. The size, location, and shedding frequency of these structures has been characterized. The impingement point of the upstream vorticity was found to dictate the dynamics of the phenomena.
50

Investigation of the Flow Topology around a Simplified Two-wheel Landing Gear with Emphasis on the Stagnation Point

Feltham, Graham 22 November 2013 (has links)
Experiments were conducted in a recirculating water channel to determine the flow topology around a simplified two-wheel landing gear model. Both hydrogen bubble visualization and Particle Image Velocimetry techniques were employed. The Reynolds number based on wheel diameter was 32,500. The general flow topology was characterized for several wheel configurations. Previously undiscovered structures have been found in several regions of the flow field, and their behavior was found to depend strongly on the geometry of the wheels. The phenomena of vorticity amplification near the stagnation point of the wheels was also studied. Weak upstream vorticity was found to collect, grow, and amplify into large coherent structures which then shed in a regular manner. The size, location, and shedding frequency of these structures has been characterized. The impingement point of the upstream vorticity was found to dictate the dynamics of the phenomena.

Page generated in 0.0558 seconds