Return to search

Forearc basin detrital zircon provenance of Mesozoic terrane accretion and translation, Talkeetna Mountains-Matanuska Valley, south-central Alaska

The Wrangellia composite terrane is one of the largest fragments of juvenile crust added to the North American continent since Mesozoic time, and refining its accretionary history has important implications for understanding how continents grow. New U-Pb geochronology and Hf isotopes of detrital zircons from Late Jurassic-Late Cretaceous strata from the forearc of the Wrangellia composite terrane allows more insight on the tectonic and paleogeographic history of the terrane.
Our stratigraphically oldest samples from the Late Jurassic Naknek Formation have a detrital zircon U-Pb signature dominated by Early and Late Jurassic grains (195-190 Ma; 153-147 Ma). Hf isotopic compositions of these grains are juvenile to intermediate (εHf(t)=4.5-14.7). Disconformably above the Naknek Formation are two poorly understood units Ks and Kc. The Ks unit is dominated by Early to Late Jurassic grains (159-154 Ma) with a few Paleozoic grains (347-340 Ma). Hf isotopic compositions of Carboniferous-Jurassic grains are juvenile to intermediate (εHf(t)=6.0-18.8). The overlying Kc unit has Late to Early Jurassic zircons (198-161 Ma), and an increase in Paleozoic ages (374-323 Ma). Hf isotopic compositions of these grains are juvenile to intermediate (εHf(t)=4.5-14.7). Samples from the Matanuska Formation have major Late Cretaceous grains (90-71 Ma), and minor Early Cretaceous (137-106 Ma), Late to Early Jurassic (200-153 Ma), Paleozoic (367-277 Ma), and Precambrian grains (2597-1037 Ma). Hf compositions have a wider range from both the Late Cretaceous grains (εHf(t)=-1.5-14.9) and Paleozoic-Precambrian grains (εHf(t)=-23.7-16.3).
Our results suggest an evolving provenance from Late Jurassic to Late Cretaceous time for the Wrangellia composite terrane forearc basin. The Late Jurassic Naknek Formation samples were dominantly derived from a juvenile to intermediate Jurassic igneous sediment source. During Early Cretaceous time, there is a slight increase in the number of Paleozoic grains in the Ks and Kc unit samples. The Early Cretaceous sediments have a mostly positive Hf isotopic compositions suggesting exhumation of Jurassic and Paleozoic juvenile igneous sediment sources. By Late Cretaceous time, our data illustrates another increase in Paleozoic grain abundances, in addition to the introduction of Precambrian grains, all with widely variable Hf isotopic compositions. We interpret this to reflect a larger sediment flux from the interior of Alaska where more evolved igneous rocks of that age are found.

Identiferoai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-7091
Date01 May 2017
CreatorsReid, Mattie Morgan
ContributorsFinzel, Emily Suzanne
PublisherUniversity of Iowa
Source SetsUniversity of Iowa
LanguageEnglish
Detected LanguageEnglish
Typethesis
Formatapplication/pdf
SourceTheses and Dissertations
RightsCopyright © 2017 Mattie Morgan Reid

Page generated in 0.0018 seconds