Interactions et propriétés physico-chimiques de surfaces modèles de biomatériaux

La surface d’un implant ou d’un système à libération contrôlée de médicament est la première zone en contact avec les systèmes physiologiques. Les propriétés de surface vont alors définir le devenir à court et long termes de ces biomatériaux dans l’organisme. Pour améliorer la biointégration mais aussi l’efficacité des matériaux en contact avec les fluides et tissus biologiques, un fin contrôle des phénomènes se produisant à l’interface biologique est nécessaire. Cette thèse s’intéresse à l’étude de trois types de surfaces pouvant modéliser celles de biomatériaux couramment employés.
Dans un premier temps, la stabilité hydrolytique de surface amino-fonctionnalisée a été investiguée. L’amino-fonctionnalisation de surface via l’emploi de monocouche auto-assemblée rencontre un intérêt certain pour l’ancrage de diverses molécules, macromolécules, systèmes colloïdaux et cellules. Cependant, le manque de stabilité en milieu aqueux limite grandement leurs perspectives d’utilisation pour la fonctionnalisation de surface de biomatériaux. Dans ce manuscrit, une monocouche amino-fonctionnalisée à base d’aminoalkylsilane a été greffée sur des substrats de silicate (silice et mica). L’extrême stabilité hydrolytique rapportée pour cette monocouche permet une immersion prolongée en milieu aqueux et sur une large gamme de pH. Les paramètres ayant été identifiés comme impactant cette stabilité sont l’organisation de la monocouche, la densité de greffage et la longueur de la chaîne carbonée de l’aminoalkylsilane.
Dans un second temps, les propriétés lubrifiantes en milieu aqueux de surfaces structurées sont rapportées. Le besoin en surface autolubrifiante couvre une large variété de biomatériaux tels que les substituts cartilagineux, les dispositifs oculaires ou bien les cathéters. Des structures dômes ont été produites sur des surfaces via l’immobilisation de particules. Des particules polymériques à base de polyélectrolytes sensibles aux variations de pH ont permis l’obtention de structures molles et déformables alors que l’immobilisation de particules de silice a permis la formation de structures dures. Deux mécanismes majeurs contrôlant les propriétés de frottement ont été mis en évidence. Les surfaces structurées à partir de polyélectrolytes présentent des propriétés de frottement directement corrélées au gonflement et donc à la teneur en eau de ces structures. Ce
ii
gonflement peut être contrôlé par le pH du milieu aqueux. Plus les structures sont gonflées, plus le coefficient de frottement est faible. En revanche, avec des structures dures obtenues par l’immobilisation de particules de silice, le roulement de ces particules permet d’obtenir sous certaines conditions des coefficients de frottement extrêmement faibles. Dans ce cas, la nature du lien entre la particule et le substrat importe peu et un dégreffage systématique de certaines particules est observé pour permettre le mouvement des surfaces tout en limitant les forces de frottement.
Dans un troisième temps, la complexation de simples brins de siARN via différentes natures d’interactions a été étudiée à l’aide de surfaces modèles de chimie variable. Cette étude a permis de démontrer la possibilité d'adsorber des simples brins de siARN via des interactions non-électrostatiques sur des surfaces planes. Des interactions hydrophobes et les liaisons hydrogène ont par la suite pu être employées pour complexer cet acide nucléique avec des formulations micellaires et liposomales non-cationiques. Cette étude permet d'envisager la conception de nanovecteurs non-cationiques et donc moins toxiques pour la délivrance de simples brins de siARN.
Les travaux présentés dans ce manuscrit contribuent à l’élargissement des connaissances en matière de propriétés physico-chimiques de surface aux interfaces biologiques. / The surface of an implant or a drug delivery system is the first area of contact with biological environment. The surface properties of these biomaterials will define the short and long term behavior in the organism. To improve biointegration and efficiency, a fine control of the biological interface is required. This thesis investigates three different kind of surfaces modelling commonly used biomaterials.
First, the hydrolytic stability of amino-functionalized surfaces was investigated. The amino-functionalization using self-assembled monolayers is required for the anchorage of molecules, macromolecules, colloidal systems and cells onto biomaterials. However, the lack of stability in aqueous media limits their use. In this manuscript, an amino-functionalized self-assembled monolayer made of aminoalkylsilane was grafted onto silicate substrates (silica and mica). The extreme robustness that we reported for this monolayer allows immersion into aqueous media for a wide range of pH and over long periods of time. The most important parameters that were identified that significantly impact the hydrolytic stability are the order of the monolayers, the grafting density and the length of the alkyl chain of the aminoalkylsilane.
Second, the lubricant properties in aqueous media of structured surfaces are reported. The need in self-lubricant surfaces is required in a wide variety of biomaterials such as the cartilage substitute, ocular medical device or catheters. Domed structures were produced on surfaces through immobilization of particles. Polymeric nanoparticles composed of pH-sensitive polyelectrolytes were used to prepared soft and deformable structures while the immobilization of silica particles allows hard structures to be created. Two main mechanisms controlling friction properties were identified. Friction properties of structured surfaces made of polyelectrolytes were controlled by the swelling and the water content of the particles. This swelling can be tuned by changing the pH of the aqueous media. An increase in particle swelling leads to a decrease in the friction coefficient. However, with the hard structures, the rolling of the particles in some cases can also lead to extremely low friction coefficient. In that case, the nature of the attachment of
iv
the particle to the surface does not matter and systematic degrafting of some particles was observed which allows surfaces to slide with small friction forces.
Third, the complexation of a single-stranded siRNA through different interactions was investigated with model surfaces of various chemistry. The results show that ss-siRNA can adsorb onto hydrophilic (positively and negatively charged) as well as on hydrophobic substrates suggesting that the complexation can occur through hydrophobic interactions and hydrogen bonding in addition to electrostatic interactions. This study suggests that non-electrostatic interactions could be exploited to complement electrostatic interactions in the design of less toxic nanocarriers and that non-cationics nanovectors can be employed as a potential single-stranded siRNA delivery systems.
The results presented in this thesis contribute to increase the knowledge in the field of physico-chemistry surface properties of biological interfaces.

Identiferoai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/19020
Date12 1900
CreatorsGiraud, Lucie
ContributorsGiasson, Suzanne
Source SetsUniversité de Montréal
LanguageFrench
Detected LanguageFrench
TypeThèse ou Mémoire numérique / Electronic Thesis or Dissertation

Page generated in 0.0037 seconds