Return to search

Retrospektive Bewegungskorrektur zur hochaufgelösten Darstellung der menschlichen Lunge mittels Magnetresonanztomographie / Retrospective Motion Correction for High Resolution Magnetic Resonance Imaging of the Human Lung

Ziel dieser Arbeit war es, das gesamte Lungenvolumen in hoher dreidimensionaler Auflösung mittels der MRT darzustellen. Um trotz der niedrigen Protonendichte der Lunge und der geforderten hohen Auflösung ausreichend Signal für eine verlässliche Diagnostik zu erhalten, sind Aufnahmezeiten von einigen Minuten nötig. Um die Untersuchung für den Patienten angenehmer zu gestalten oder auf Grund der eingeschränkten Fähigkeit eines Atemstopps überhaupt erst zu ermöglichen, war eine Anforderung, die Aufnahmen in freier Atmung durchzuführen. Dadurch entstehen allerdings Bewegungsartefakte, die die Diagnostik stark beeinträchtigen
und daher möglichst vermieden werden müssen. Für eine Bewegungskompensation
der Daten muss die auftretende Atembewegung detektiert werden. Die Bewegungsdetektion
kann durch externe Messgeräte (Atemgurt oder Spirometer) oder durch eine
zusätzliche Anregungen erfolgen (konventionelle Navigatoren) erfolgen. Nachteile
dieser Methoden bestehen darin, dass die Bewegung während der Atmung nicht
direkt verfolgt wird, dass elektronische Messgeräte in die Nähe des Tomographen
gebracht werden und das die Patienten zusätzlich vorbereitet und eingeschränkt
werden. Des Weiteren erfordert eine zusätzliche Anregung extra Messzeit und kann
unter Umständen die Magnetisierung auf unterwünschte Weise beeinflussen.
Um die angesprochenen Schwierigkeiten der Bewegungsdetektion zu umgehen,
wurden in dieser Arbeit innerhalb einer Anregung einer 3d FLASH-Sequenz sowohl
Bilddaten- als auch Navigatordaten aufgenommen. Als Navigator diente dabei das
nach der Rephasierung aller bildgebenden Gradienten entstehende Signal (DC Signal).
Das DC Signal entspricht dabei der Summe aller Signale, die mit einem bestimmten
Spulenelement detektiert werden können. Bewegt sich beispielsweise die Leber
bedingt durch die Atmung in den Sensitivitätsbereich eines Spulenelementes, wird
ein stärkeres DC Signal detektiert werden. Je nach Positionierung auf dem Körper
kann so die Atembewegung mit einzelnen räumlich lokalisierten Spulenelementen
nachverfolgt werden. Am DC Signalverlauf des für die Bewegungskorrektur ausgewählten
Spulenelementes sind dann periodische Signalschwankungen zu erkennen.
Zusätzlich können aus dem Verlauf Expirations- von Inspirationszuständen unterschieden
werden, da sich Endexpirationszustände im Regelfall durch eine längere
Verweildauer auszeichnen.
Grundsätzlich kann das DC Signal vor oder nach der eigentlichen Datenaufnahme
innerhalb einer Anregung aufgenommen werden. Auf Grund der kurzen Relaxationszeit
T∗2 des Lungengewebes fällt das Signal nach der RF Anregung sehr schnell ab. Um
möglichst viel Signal zu erhalten sollten, wie in dieser Arbeit gezeigt wurde, innerhalb einer Anregung zuerst die Bilddaten und danach die Navigatordaten aufgenommen
werden. Dieser Ansatz führt zu einer Verkürzung der Echozeit TE um 0.3 ms und
damit zu einem SNR Gewinn von etwa 20 %. Gleichzeitig ist das verbleibende Signal
nach der Datenakquisition und Rephasierung der bildgebenden Gradienten noch
ausreichend um die Atembewegung zu erfassen und somit eine Bewegungskorrektur
der Daten (Navigation) zu ermöglichen.
Um eine retrospektive Bewegungskorrektur durchführen zu können, müssen Akzeptanzbedingungen
(Schwellenwerte) für die Datenauswahl festgelegt werden. Bei
der Wahl des Schwellenwertes ist darauf zu achten, dass weder zu wenige noch zu
viele Daten akzeptiert werden. Akzeptiert man sehr wenige Daten, zeichnen sich die
Rekonstruktionen durch einen scharfen Übergang zwischen Lunge und Diaphragma
aus, da man sehr wenig Bewegung in den Rekonstruktionen erlaubt. Gleichzeitig
erhöht sich allerdings das Risiko, dass nach der Navigation Linien fehlen. Dies führt
zu Einfaltungsartefakten, die in Form von gestörten Bildintensitäten in den Rekonstruktionen
zu sehen sind und die diagnostische Aussagekraft einschränken. Um
Einfaltungsartefakte zu vermeiden sollte der Schwellenwert so gewählt werden, dass
nach der Datenauswahl keine Linien fehlen. Aus dieser Anforderung lässt sich ein
maximaler Schwellenwert ableiten. Akzeptiert man dagegen sehr viele Daten, zeichnen
sich die Rekonstruktionen durch erhöhtes Signal und das vermehrte Auftreten
von Bewegungsartefakten aus. In diesem Fall müsste der Arzt entscheiden, ob Bewegungsartefakte
die Diagnostik zu stark beeinflussen. Wählt man den Schwellenwert
so, dass weder Linien fehlen noch zu viel Bewegung erlaubt wird, erhält man Rekonstruktionen
die sich durch einen scharfen Diaphragmaübergang auszeichnen und in
denen noch kleinste Gefäße auch in der Nähe des Diaphragmas deutlich zu erkennen
sind. Hierfür haben sich Schwellenwerte, die zu einer Datenakzeptanz von ca. 40 %
führen als günstig erwiesen.
Um Einfaltungsartefakte auf Grund der retrospektiven Datenauswahl zu verhindern,
muss das Bildgebungsvolumen mehrfach abgetastet werden. Dadurch wird
gewährleistet, dass für die letztendliche Rekonstruktion ausreichend Daten zur Verfügung
stehen, wobei mehrfach akzeptierte Daten gemittelt werden. Dies spielt auf
Grund der niedrigen Protonendichte der Lunge eine wesentliche Rolle in der Rekonstruktion
hochaufgelöster Lungendatensätze. Weiterhin führt das Mitteln von
mehrfach akzeptierten Daten zu einer Unterdrückung der sogenannten Ghost Artefakte,
was am Beispiel der Herzbewegung in der Arbeit gezeigt wird.
Da die Messungen unter freier Atmung durchgeführt werden und keine zusätzlichen
externen Messgeräte angeschlossen werden müssen, stellte die Untersuchung
für die Patienten in dieser Arbeit kein Problem dar. Im ersten Teil dieser wurde Arbeit
gezeigt, dass sich mit Hilfe des DC Signales als Navigator und einer retrospektiven
Datenauswahl das gesamte Lungenvolumen in hoher dreidimensionaler Auflösung
von beispielsweise 1.6 x 1.6 x 4 mm3 innerhalb von 13 min. darstellen lässt. Die Anwendbarkeit der vorgestellten Methode zur Bewegungskorrektur wurde neben
Probanden auch an Patienten demonstriert.
Da wie bereits beschrieben das Bildgebungsvolumen mehrfach abgetastet werden
muss, wiederholt sich auch die Abfolge der für die Bildgebung verantwortlichen
Gradienten periodisch. Da sich der Atemzyklus aber auch periodisch wiederholt,
kann es zu Korrelationen zwischen der Atmung und den wiederholten Messungen
kommen. Dies führt dazu, dass auch nach vielen wiederholten Messungen immer
noch größere Bereiche fehlender Linien im k-Raum bleiben, was zu Artefakten in
den Rekonstruktionen führt. Dies konnte im Falle der konventionellen Bewegungskorrektur
in den Gatingmasken, die die Verteilung und Häufigkeit der einzelnen
akzeptierten Phasenkodierschritte im k-Raum zeigen, beobachtet werden.
Da eine vorsätzliche Unterbrechung der Atemperiodizität (der Patient wird dazu
angehalten, seine Atemfrequenz während der Messung absichtlich zu variieren) zur
Vermeidung der angesprochenen Korrelationen nicht in Frage kommt, musste die
Periodizität in der Datenaufnahme unterbrochen werden. In dieser Arbeit wurde
dies durch eine quasizufällige Auswahl von Phasen- und Partitionskodiergradienten
erreicht, da Quasizufallszahlen so generiert werden, dass sie unabhängig von ihrer
Anzahl einen Raum möglichst gleichförmig ausfüllen. Die quasizufällige Datenaufnahme
führt deshalb dazu, das sowohl akzeptierte als auch fehlende Linien nach der
Bewegungskorrektur homogen im k-Raum verteilt auftreten.
Vergleicht man das auftreten von Ghosting zeichnen sich die quasizufälligen Rekonstruktionen
im Vergleich zur konventionellen Datenaufnahme durch eine verbesserte
Reduktion von Ghost Artefakten aus. Dies ist auf die homogene Verteilung mehrfach
akzeptierter Linien im k-Raum zurückzuführen. Die homogenere Verteilung von
fehlenden Linien im k-Raum führt weiterhin zu einer wesentlich stabileren Rekonstruktion
fehlender Linien mit parallelen MRT-Verfahren (z.B. iterativem Grappa).
Dies wird umso deutlicher je höher der Anteil fehlender Linien im k-Raum wird. Im
Falle der konventionellen Datenaufnahme werden die zusammenhängenden Bereiche
fehlender Linien immer größer, was eine erfolgreiche Rekonstruktion mit iterativem
Grappa unmöglich macht. Im Falle der quasizufälligen Datenaufnahme dagegen
können auch Datensätze in denen 40% der Linien fehlen einfaltungsartefaktfrei
rekonstruiert werden.
Im weiteren Verlauf der Arbeit wurde gezeigt, wie die Stabilität der iterativen Grappa
Rekonstruktion im Falle der quasizufälligen Datenaufnahme für eine erhebliche
Reduktion der gesamten Messzeit genutzt werden kann. So ist in einer Messzeit von
nur 74s die Rekonstruktion eines artefaktfreien und bewegungskorrigierten dreidimensionalen
Datensatzes der menschlichen Lunge mit einer Auflösung von 2 x 2 x
5 mm3 möglich. Des Weiteren erlaubt die quasizufällige Datenaufnahme in Kombination
mit iterativem Grappa die Rekonstruktion von Datensätzen unterschiedlicher
Atemphasen von Inspiration bis Expiration (4D Bildgebung). Nach einer Messzeit
von 15min. wurden 19 unterschiedliche Atemzustände rekonstruiert, wobei sich der Anteil der fehlenden Linien zwischen 0 und 20 % lag. Im Falle der konventionellen
Datenaufnahme wäre eine wesentlich längere Messzeit nötig gewesen, um ähnliche
Ergebnisse zu erhalten.
Zum Schluss soll noch ein Ausblick über mögliche Weiterentwicklungen und Anwendungsmöglichkeiten,
die sich aus den Erkenntnissen dieser Arbeit ergeben haben,
gegeben werden. So könnte das quasizufällige Aufnahmeschema um eine Dichtegewichtung
erweitert werden. Hierbei würde der zentrale k-Raum Bereich etwas
häufiger als die peripheren Bereiche akquiriert werden. Dadurch sollte die iterative
Grappa Rekonstruktion noch stabiler funktionieren und Ghost Artefakte besser reduziert
werden. Die Verteilung der Linien sollte allerdings nicht zu inhomogen werden,
um größere Lücken im k-Raum zu vermeiden.
Darüber hinaus könnte die vorgestellte Methode der Bewegungskompensation
auch für die Untersuchung anderer Organe oder Körperteile verwendet werden.
Voraussetzung wäre lediglich das Vorhandensein dezidierter Spulenanordnungen,
mit denen die Bewegung nachverfolgt werden kann. So ist beispielsweise eine dynamische
Bildgebung des frei und aktiv bewegten Knies möglich, wobei zwischen
Beugung und Streckung durch die erste Ableitung des zentralen k-Raum Signales
unterschieden werden kann. Dies kann zusätzliche Diagnoseinformationen liefern
oder für Verlaufskontrollen nach Operationen benutzt werden [15].
Eine Weiterentwicklung mit hohem klinischen Potential könnte die Kombination
der in dieser Arbeit vorgestellten retrospektiven Bewegungskorrektur mit einer Multi-
Gradienten-Echo Sequenz darstellen. Hierzu musste die bestehende Sequenz lediglich
um eine mehrfache Abfolge von Auslesegradienten innerhalb einer Anregung erweitert
werden. Dies ermöglicht eine bewegungskorrigierte voxelweise Bestimmung der
transversalen Relaxationszeit T∗2 in hoher räumlicher Auflösung. Unter zusätzlicher
Sauerstoffgabe kann es zu einer Veränderung von T∗2 kommen, die auf den sogenannten
BOLD Effekt (Blood Oxygen Level Dependent) zurückzuführen ist. Aus dieser
Änderung könnten Rückschlüsse auf hypoxische Tumorareale gezogen werden. Da
diese eine erhöhte Strahlenresistenz aufweisen, könnte auf diese Bereiche innerhalb
des Tumors eine erhöhte Strahlendosis appliziert und so möglicherweise Behandlungsmisserfolge
reduziert werden. Gleichzeitig kann durch die 4D Bildgebung eine
mögliche Tumorbewegung durch die Atmung erfasst und diese Information ebenfalls
in der Bestrahlungsplanung benutzt werden. Die Lungen MRT könnte somit um eine
hochaufgelöste dreidimensionale funktionelle Bildgebung erweitert werden. / The goal of this work was to depict the whole lung volume by MRI in high spatial
resolution. To obtain sufficient signal for a reliable diagnosis despite the inherently low
proton density of the lung and the requested high spatial resolution, total acquisition
times of a few minutes are mandatory. Simultaneously, the measurements should
be performed under free breathing conditions making patient examinations more
comfortable or possible for patients with limited breath holding capabilities. However,
free breathing leads to motion artifacts which can severely influence the diagnostic
value of the images and hence have to be avoided. To compensate for motion the
prevalent breathing pattern has to be detected. This can be achieved by external
measurement devices such as a respiration belt or a spirometer or by conventional
navigator echoes using an additional excitation pulse. Drawbacks of these methods
are that the respiratory motion is detected only indirectly, that electronic devices
have to be used near the MRI machine and the patients have to be prepared and are
strongly restricted. Furthermore, additional excitation pulses will prolong the total
acquisition time and may affect the magnetization adversely.
To overcome these limitations of motion detection in the present work, the image as
well as the navigator data was acquired within one excitation of a FLASH sequence.
The resulting central k-space signal (DC signal) after rephasing of all imaging gradients
was used as a navigator signal. The DC signal represents the sum of all signals
that can be detected with a single receiver coil element. If the liver is for example
moving in the sensitivity area of one coil element due to breathing, an increased DC
signal will be detected. Depending on their local position on the body the locally
confined coil elements are able to track respiratory motion. The time course of the
DC signal of the selected coil element for respiratory motion compensation will
depict periodic signal variations accordingly. Additionally, respiratory phases of
expiration can be distinguished from inspiratory phases because the resting times in
end-expiratory phases are usually longer compared to end-inspiratory phases.
The DC signal can be acquired either before or after the actual image data acquisition
within one excitation. The short T2* of the human lung tissue leads to a
rapid signal decay after the excitation. As shown in this thesis, the DC signal should
be acquired after the image data within one excitation. This approach allows for
echo time (TE) reduction of 0.3 ms leading to a signal benefit of approximately 20 %.
Simultaneously, the remaining signal after image data acquisition and rephasing of
all imaging gradients is still sufficient to track respiratory motion and can therefore
be used for motion compensation of the acquired data. In order to compensate for motion retrospectively, threshold values for data acceptance
have to be defined. Setting the threshold value, neither too less nor too much
data should be accepted. Accepting very few data leads to sharp transition between
the lung and the diaphragm because not much motion is allowed in the reconstruction
process. On the other hand, disturbed signal intensity can be observed because of
under-sampling artifacts due to missing lines after gating. These artifacts can restrict
the diagnostic value of the reconstructions. Therefore, the selected threshold value
should lead to a fully sampled k-space after gating. This requirement can be used to
define the maximum threshold value for data acceptance. On the contrary, accepting
very much data leads to higher signal intensity but also to more distinctive motion
artifacts. In this case, the physician has to decide whether the motion artifacts affect
his diagnosis too much. A moderate threshold value leads to a fully sampled k-space
as well as good motion artifact compensation. This results in reconstructions that
are characterized by a sharp depiction of small vessels even near the diaphragm. For
this, threshold values leading to a data acceptance of about 40 % turned out to be
beneficial.
To avoid under-sampling artifacts because of retrospective gating, the imaging
volume has to be acquired several times. This ensures that enough data is available
for the final reconstruction whereas multiple accepted data is averaged. Averaging is
essential for the reconstruction of high resolution data sets because of the inherently
low proton density of the lung. Furthermore it leads to the reduction of ghost artifacts
as is shown using the example of heart motion in this work.
As no external measurement devices were used and the data was acquired under
free breathing conditions the examinations posed no problem for the patients within
this work. It was shown so far that the DC signal in combination with retrospective
gating can be used to reconstruct high resolution 3d lung data sets with a resolution
of 1.6 x 1.6 x 4 mm3 within 13 min., for instance. The applicability of the presented
method for motion compensation was shown for volunteers as well as patients.
Since as already described the imaging volume must be acquired several times, the
series of gradients for spatial encoding are repeated periodically. As the respiratory
cycle is periodically as well, correlations between the repeated measurements and the
breathing cycle can occur. Therefore, even after many repeated measurements large
areas of missing k-space lines can remain, leading to artifacts in the reconstructions.
This can be observed in the gating masks, showing the distribution of accepted and
missing lines in k-space, in case of conventional motion compensation used in this
work so far.
To avoid the aforementioned correlations, the periodicity in the repeated acquisitions
has to be interrupted because of suspending the periodic breathing pattern of
patients deliberately would be a serious intervention and is therefore ineligible. This
was accomplished by a quasi-random selection of the phase and partition encoding
gradients as quasi-random numbers are generated to fill the space as uniformly as possible regardless of their number. Therefore, accepted lines as well as missing lines
are uniformly distributed in k-space after retrospective gating.
A more uniform distribution of multiple accepted k-space lines in case of quasirandom
sampling leads to an improved reduction of Ghost-Artifacts compared to
conventional sampling. Furthermore, the more uniform distribution of missing kspace
lines leads a considerably more stable reconstruction of missing lines using
parallel imaging techniques (as iterative Grappa for example). This is getting more
distinct the higher the proportion of missing k-space lines is. The contiguous areas
of missing k-space lines are becoming increasingly large in case of conventional
sampling, making a successful reconstruction using iterative Grappa impossible. In
contrast, quasi-random sampling enables for the successful reconstruction of artifact
free images even when 40 % of the acquired lines were missing after retrospective
gating.
In addition, the stability of the iterative GRAPPA reconstructions in case of quasirandom
sampling allows for a substantial reduction of the total acquisition time.
Thus, an artifact free motion compensated data set of 2 x 2 x 5 mm3 resolution could
be reconstructed for a measurement time of only 74s. Furthermore, quasi-random
sampling in combination with iterative Grappa enables for the reconstruction of
data sets of different respiratory phases from inspiration to expiration (4d imaging).
Accordingly, 19 different respiratory phases could be reconstructed after 15min of
data acquisition. The percentage of missing lines was between 0 and 20 %. Hence, in
case of conventional sampling a considerably longer measurement time would have
been required to achieve similar results.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:12408
Date January 2015
CreatorsWeick, Stefan
Source SetsUniversity of Würzburg
Languagedeu
Detected LanguageGerman
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://opus.bibliothek.uni-wuerzburg.de/doku/lic_mit_pod.php, info:eu-repo/semantics/openAccess

Page generated in 0.0056 seconds