Bewertung und Auswirkungen der Simulationsgüte führender Klimamoden in einem Multi-Modell Ensemble / Evaluation and effects of the simulation quality of leading climate modes in a multi-model ensemble

Der rezente und zukünftige Anstieg der atmosphärischen Treibhausgaskonzentration bedeutet für das terrestrische Klimasystem einen grundlegenden Wandel, der für die globale Gesellschaft schwer zu bewältigende Aufgaben und Herausforderungen bereit hält. Eine effektive, rühzeitige Anpassung an diesen Klimawandel profitiert dabei enorm von möglichst genauen Abschätzungen künftiger Klimaänderungen.
Das geeignete Werkzeug hierfür sind Gekoppelte Atmosphäre Ozean Modelle (AOGCMs). Für solche Fragestellungen müssen allerdings weitreichende Annahmen über die zukünftigen klimarelevanten Randbedingungen getroffen werden. Individuelle Fehler dieser Klimamodelle, die aus der nicht perfekten Abbildung der realen Verhältnisse und Prozesse resultieren, erhöhen die Unsicherheit langfristiger Klimaprojektionen. So unterscheiden sich die Aussagen verschiedener AOGCMs im Hinblick auf den zukünftigen Klimawandel insbesondere bei regionaler Betrachtung, deutlich. Als Absicherung gegen Modellfehler werden üblicherweise die Ergebnisse mehrerer AOGCMs, eines Ensembles an Modellen, kombiniert. Um die Abschätzung des Klimawandels zu präzisieren, wird in der vorliegenden Arbeit der Versuch unternommen, eine Bewertung der Modellperformance der 24 AOGCMs, die an der dritten Phase des Vergleichsprojekts für gekoppelte Modelle (CMIP3) teilgenommen haben, zu erstellen. Auf dieser Basis wird dann eine nummerische Gewichtung für die Kombination des Ensembles erstellt. Zunächst werden die von den AOGCMs simulierten Klimatologien für einige
grundlegende Klimaelemente mit den betreffenden klimatologien verschiedener Beobachtungsdatensätze quantitativ abgeglichen. Ein wichtiger methodischer Aspekt
hierbei ist, dass auch die Unsicherheit der Beobachtungen, konkret Unterschiede zwischen verschiedenen Datensätzen, berücksichtigt werden. So zeigt sich, dass die Aussagen, die aus solchen Ansätzen resultieren, von zu vielen Unsicherheiten in den Referenzdaten beeinträchtigt werden, um generelle Aussagen zur Qualität von AOGCMs zu treffen. Die Nutzung der Köppen-Geiger Klassifikation offenbart jedoch, dass die prinzipielle Verteilung der bekannten Klimatypen im kompletten CMIP3 in vergleichbar guter Qualität reproduziert wird. Als Bewertungskriterium wird daher hier die Fähigkeit der AOGCMs die großskalige natürliche Klimavariabilität, konkret die hochkomplexe gekoppelte
El Niño-Southern Oscillation (ENSO), realistisch abzubilden herangezogen. Es kann anhand verschiedener Aspekte des ENSO-Phänomens gezeigt werden, dass nicht alle AOGCMs hierzu mit gleicher Realitätsnähe in der Lage sind. Dies steht im Gegensatz zu den dominierenden Klimamoden der Außertropen, die modellübergreifend überzeugend repräsentiert werden. Die wichtigsten Moden werden, in globaler Betrachtung, in verschiedenen Beobachtungsdaten über einen neuen Ansatz identifiziert. So können für einige bekannte Zirkulationsmuster neue Indexdefinitionen gewonnen werden, die sich sowohl als äquivalent zu den Standardverfahren erweisen und im Vergleich zu diesen zudem eine deutliche Reduzierung
des Rechenaufwandes bedeuten. Andere bekannte Moden werden dagegen als weniger bedeutsame, regionale Zirkulationsmuster eingestuft. Die hier vorgestellte
Methode zur Beurteilung der Simulation von ENSO ist in guter Übereinstimmung mit anderen Ansätzen, ebenso die daraus folgende Bewertung der gesamten Performance
der AOGCMs. Das Spektrum des Southern Oscillation-Index (SOI) stellt somit eine aussagekräftige Kenngröße der Modellqualität dar.
Die Unterschiede in der Fähigkeit, das ENSO-System abzubilden, erweisen sich als signifikante Unsicherheitsquelle im Hinblick auf die zukünftige Entwicklung einiger fundamentaler und bedeutsamer Klimagrößen, konkret der globalen Mitteltemperatur,
des SOIs selbst, sowie des indischen Monsuns. Ebenso zeigen sich signifikante Unterschiede für regionale Klimaänderungen zwischen zwei Teilensembles des CMIP3, die auf Grundlage der entwickelten Bewertungsfunktion eingeteilt werden. Jedoch sind diese Effekte im Allgemeinen nicht mit den Auswirkungen der
anthropogenen Klimaänderungssignale im Multi-Modell Ensemble vergleichbar, die für die meisten Klimagrößen in einem robusten multivariaten Ansatz detektiert und
quantifiziert werden können. Entsprechend sind die effektiven Klimaänderungen, die sich bei der Kombination aller Simulationen als grundlegende Aussage des
CMIP3 unter den speziellen Randbedingungen ergeben nahezu unabhängig davon, ob alle Läufe mit dem gleichen Einfluss berücksichtigt werden, oder ob die erstellte nummerische Gewichtung verwendet wird. Als eine wesentliche Begründung hierfür kann die Spannbreite der Entwicklung des ENSO-Systems identifiziert werden. Dies
bedeutet größere Schwankungen in den Ergebnissen der Modelle mit funktionierendem ENSO, was den Stellenwert der natürlichen Variabilität als Unsicherheitsquelle
in Fragen des Klimawandels unterstreicht. Sowohl bei Betrachtung der Teilensembles als auch der Gewichtung wirken sich dadurch gegenläufige Trends im SOI
ausgleichend auf die Entwicklung anderer Klimagrößen aus, was insbesondere bei letzterem Vorgehen signifikante mittlere Effekte des Ansatzes, verglichen mit der
Verwendung des üblichen arithmetischen Multi-Modell Mittelwert, verhindert. / The recent and future increase in atmospheric greenhouse gases will cause fundamental change in the terrestrial climate system, which will lead to enormous tasks and challenges for the global society. Effective and early adaptation to this climate change will benefit hugley from optimal possible estimates of future climate
change. Coupled atmosphere-ocean models (AOGCMs) are the appropriate tool for this. However, to tackle these questions, it is necessary to make far reaching
assumptions about the future climate-relevant boundary conditions. Furthermore there are individual errors in each climate model. These originate from flaws in
reproducing the real climate system and result in a further increase of uncertainty with regards to long-range climate projections. Hence, concering future climate
change, there are pronounced differences between the results of different AOGCMs, especially under a regional point of view. It is the usual approach to use a number
of AOGCMs and combine their results as a safety measure against the influence of such model errors. In this thesis, an attempt is made to develop a valuation
scheme and based on that a weighting scheme, for AOGCMs in order to narrow the range of climate change projections. The 24 models that were included in the
third phase of the coupled model intercomparsion project (CMIP3) are used for this purpose. First some fundamental climatologies simulated by the AOGCMs are quantitatively
compared to a number of observational data. An important methodological aspect of this approach is to explicitly address the uncertainty associated with the observational data. It is revealed that statements concerning the quality of climate models based on such hindcastig approaches might be flawed due to uncertainties
about observational data. However, the application of the Köppen-Geiger classification reveales that all considered AOGCMs are capable of reproducing the fundamental distribution of observed types of climate.
Thus, to evaluate the models, their ability to reproduce large-scale climate variability is chosen as the criterion. The focus is on one highly complex feature,
the coupled El Niño-Southern Oscillation. Addressing several aspects of this climate mode, it is demonstrated that there are AOGCMs that are less successful in doing so than others. In contrast, all models reproduce the most dominant extratropical climate modes in a satisfying manner. The decision which modes are the most important is made using a distinct approach considering several global sets of observational data. This way, it is possible to add new definitions for the time series of some well-known climate patterns, which proof to be equivalent to the standard definitions. Along with this, other popular modes are identified as less important regional patterns. The presented approach to assess the simulation of ENSO is in good agreement with other approaches, as well as the resulting rating of the overall model performance. The spectrum of the timeseries of the Southern Oscillation Index (SOI) can thus be regarded as a sound parameter of the quality of AOGCMs.
Differences in the ability to simulate a realistic ENSO-system prove to be a significant source of uncertainty with respect to the future development of some
fundamental and important climate parameters, namely the global near-surface air mean temperature, the SOI itself and the Indian monsoon. In addition, there are significant differences in the patterns of regional climate change as simulated by two ensembles, which are constituted according to the evaluation function
previously developed. However, these effects are overall not comparable to the multi-model ensembles’ anthropogenic induced climate change signals which can
be detected and quantified using a robust multi-variate approach. If all individual simulations following a specific emission scenario are combined, the resulting
climate change signals can be thought of as the fundamental message of CMIP3.
It appears to be quite a stable one, more or less unaffected by the use of the derived weighting scheme instead of the common approach to use equal weights
for all simulations. It is reasoned that this originates mainly from the range of trends in the SOI. Apparently, the group of models that seems to have a realistic
ENSO-system also shows greater variations in terms of effective climate change. This underlines the importance of natural climate variability as a major source
of uncertainty concerning climate change. For the SOI there are negative Trends in the multi-model ensemble as well as positive ones. Overall, these trends tend
to stabilize the development of other climate parameters when various AOGCMs are combined, whether the two distinguished parts of CMIP3 are analyzed or the
weighting scheme is applied. Especially in case of the latter method, this prevents significant effects on the mean change compared to the arithmetic multi-model mean.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:9798
Date January 2013
CreatorsPollinger, Felix
Source SetsUniversity of Würzburg
Languagedeu
Detected LanguageGerman
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://opus.bibliothek.uni-wuerzburg.de/doku/lic_mit_pod.php, info:eu-repo/semantics/openAccess

Page generated in 0.0124 seconds