Return to search

Design of Low-Power Front End Compressive Sensing Circuitry and Energy Harvesting Transducer Modeling for Self-Powered Motion Sensor

Compressed sensing (CS) is an innovative approach of signal processing that facilitates sub-Nyquist processing of bio-signals, such as a neural signal, electrocardiogram (ECG), and electroencephalogram (EEG). This strategy can be used to lower the data rate to realize ultra-low-power performance, As the count of recording channels increases, data volume is increased resulting in impermissible transmitting power. This thesis work presents the implementation of a CMOS-based front-end design with the CS in the standard 180 nm CMOS process. A novel pseudo-random sequence generator is proposed, which consists of two different types of D flip-flops that are used for obtaining a completely random sequence. This thesis work also includes the (reverse electrowetting-on-dielectric) REWOD based energy harvesting model for self-powered bio-sensor which utilizes the electrical energy generated through the process of conversion of mechanical energy to electrical energy. This REWOD based energy harvesting model can be a good alternative to battery usage, particularly for the bio-wearable applications. The comparative analysis of the results generated for voltage, current and capacitance of the rough surface model is compared to that of results of planar surface REWOD.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc1833492
Date08 1900
CreatorsKakaraparty, Karthikeya Anil Kumar
ContributorsIfana, Mahbub, Namuduri, Kamesh, Guturu, Parthasarathy
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
Formatviii, 42 pages, Text
RightsPublic, Kakaraparty, Karthikeya Anil Kumar, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.002 seconds