Return to search

Effects of Red Blood Cell Aggregation on Microparticle Margination in Human Blood

Margination is the migration of particles in a channel towards the outer walls of the channel. In blood microcirculation, studying the margination of microparticles is important to understand platelet migration and the kinetics of drug delivery. Many new topics in drug delivery research examine the slow release of drugs through micro particles, such as micelles. The margination of such drug carriers is related to tissue absorption and, consequently, to the efficiency of drug delivery. We hypothesized that the intensity of red blood cell (RBC) aggregation will change the level of margination in a cylindrical channel. RBC aggregation is the reversible process of RBCs clumping together over time, under low fluid shear rate. A higher level of aggregation means that this clumping occurs more quickly.
The goal of this thesis is to design an experiment that measures the level margination of microparticles and the effect that RBC aggregation has on margination, in a controlled in vitro environment. Fluorescent microparticles were added to human blood preparations. The aggregation properties of the blood preparation were modulated by the addition of a macromolecule (Dextran 500). The blood preparations were injected into PDMS microfluidic devices that were modified to have circular channels in order to better mimic the geometry of physiological microcirculation.
We designed a circular microchannel that worked to capture the marginating microparticles and it was found that the level of margination of the microparticles increased with an increase in aggregation of the RBCs. This increase in margination was especially sensitive to aggregation levels in the range of physiological aggregation levels of whole blood, suggesting that aggregation plays an important role in margination in vivo.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/36989
Date January 2017
CreatorsStroobach, Mark
ContributorsFenech, Marriane
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0022 seconds