• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 8
  • 6
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effect of particle size and shape on margination and adhesion propensity

Jurney, Patrick Levi 05 October 2011 (has links)
This thesis presents an experimental study of the effect that particle size and shape have on nanoparticle magination and adhesion propensity in micro-capillaries. With the use of half elliptical cross-section microfluidic channels that were fabricated using photolithography as well as wet and dry etching techniques and geometrically mimetic of human microcirculation, particles ranging from 93 to 970 nm were flown and imaged individually adhering to the channel walls. The results show a significant increase in particle adhesion below 200 nm as well as the emergence of a critical particle diameter above which no particle adherence was observed. The volume delivery efficiency was also shown to increase below 200 nm, providing insight for the rational design of nanocarriers for targeted cancer therapeutics. / text
2

Effects of Red Blood Cell Aggregation on Microparticle Margination in Human Blood

Stroobach, Mark January 2017 (has links)
Margination is the migration of particles in a channel towards the outer walls of the channel. In blood microcirculation, studying the margination of microparticles is important to understand platelet migration and the kinetics of drug delivery. Many new topics in drug delivery research examine the slow release of drugs through micro particles, such as micelles. The margination of such drug carriers is related to tissue absorption and, consequently, to the efficiency of drug delivery. We hypothesized that the intensity of red blood cell (RBC) aggregation will change the level of margination in a cylindrical channel. RBC aggregation is the reversible process of RBCs clumping together over time, under low fluid shear rate. A higher level of aggregation means that this clumping occurs more quickly. The goal of this thesis is to design an experiment that measures the level margination of microparticles and the effect that RBC aggregation has on margination, in a controlled in vitro environment. Fluorescent microparticles were added to human blood preparations. The aggregation properties of the blood preparation were modulated by the addition of a macromolecule (Dextran 500). The blood preparations were injected into PDMS microfluidic devices that were modified to have circular channels in order to better mimic the geometry of physiological microcirculation. We designed a circular microchannel that worked to capture the marginating microparticles and it was found that the level of margination of the microparticles increased with an increase in aggregation of the RBCs. This increase in margination was especially sensitive to aggregation levels in the range of physiological aggregation levels of whole blood, suggesting that aggregation plays an important role in margination in vivo.
3

Flow of healthy and sickle red blood cells in microcirculatory conditions : clustering process and self-margination phenomenon / Écoulement de globules rouges sains et drépanocytaires en conditions micro-circulatoires : processus d'agrégation (clustering) et phénomène d'automargination

Claveria Pizarro, Viviana Andrea 26 June 2017 (has links)
J'ai caractérisé expérimentalement la formation de clusters au cours du passage de globules rouges (GRs) sains et drépanocytaires dans microcapillaires droites. L'effet de l'agrégation a été également étudié. J'ai montré que la formation des clusters dans des conditions physiologiques est due à la combinaison des interactions hydrodynamiques et des celles causées par les macromolécules du plasma. En effet, les interactions macromoléculaires ne sont pas complètement atténuées sous contraintes de cisaillement physiologiques et au contraire ils contribuent à la stabilité des clusters. En outre, j'ai découvert la présence d’une distribution bimodale en ce qui concerne les distances entre les cellules constituant les clusters hydrodynamiques.En plus, j'ai étudié expérimentalement le comportement collectif des globules rouges drépanocytaires oxygénés et leur distribution radiale le long de microcapillaires cylindriques avec un diamètre comparable à ces des veinules et des artérioles humaines. J'ai trouvé que les GRs montrent une distribution hétérogène en fonction de leur densité: les cellules plus légères ont tendance à rester prés du centre du canal, alors que la plupart des cellules denses (et aussi plus rigides) auto-marginent sous des conditions définies. L'agrégation semble d'inhiber l'auto-margination en fonction des patients et en particuliers des facteurs d’agrégation: le dextrane, par exemple, favorise l'auto-margination dans certains patients et il la diminue dans des autres. Le plasma montre de contraster l'auto-margination des GRs dans tous les sujets, en soulignant l'importance des protéines et des molécules adhésives du plasma dans les phénomènes d'agrégation. Finalement, j'ai observé que l'auto-margination se manifeste naturellement au cours de l’écoulement de globules rouges drépanocytaires. / I experimentally characterized the clustering formation of healthy and sickle red blood cells (RBCs) flowing through straight micro-capillaries. The effect of aggregation was also investigated. I found that cluster formation under physiological conditions is most likely caused by a combination of hydrodynamic and macromolecule-induced interactions. Macromolecule-induced interactions are not fully overcome by shear stresses within the physiological range, and they contribute to cluster stability. Moreover, I found that a pronounced bimodal distribution of the cell-to-cell distances in the hydrodynamic clusters is produced.Additionally, I investigated experimentally the collective behavior of oxygenated sickle RBCs and their distribution along cylindrical micro-capillaries with diameters comparable to a human venule or arteriole. I have shown that there is a heterogeneous distribution of RBCs according to their density: low-density cells tend to stay closer to the center of the channel, while most dense cells (also more rigid) self-marginated under defined conditions. Aggregation seems to inhibit self-margination depending on the aggregative factor and patient: dextran allows self-margination in some patients and inhibits it in others. Plasma inhibits self-margination of cells in all cases, highlighting the importance of the plasma proteins and adhesive molecules in the aggregation phenomena.
4

Effects of red blood cells and shear rate on thrombus growth

Mehrabadi, Marmar 12 January 2015 (has links)
Thrombosis formation upon rupture or erosion of an atherosclerotic plaque can lead to occlusion of arteries. An occlusive thrombus is the most common cause of clinical events such as angina, myocardial infarction, ischemic attacks and strokes. Occlusive thrombi can cause ischemic cardiac arrest in less than an hour. Thrombosis formation requires rapid platelet accumulation rates exceeding thrombosis lysis and embolization rates. Hemodynamics greatly affects platelet accumulation rate through affecting platelet transport to the surface of a growing thrombus. The presence of red blood cells (RBCs) in blood increases platelet transport rate by several orders of magnitude compared to transport due to Brownian motion. Margination of platelets towards the vessel walls also results in higher platelet concentration at the RBC-depleted layer relative to the bulk. In this thesis, we studied the effects of hemodynamics on thrombus growth. We investigated the effects of important flow and particle properties on margination of particles in RBC suspensions by direct numerical simulation (DNS) of cellar blood flow. We derived a scaling law for margination length. Based on this scaling law, margination length increases cubically with channel height and is independent of shear rate. Using DNS, we verified the proposed scaling law for margination length in straight channels. We also showed that rigidity and size both lead to particle margination. We show that platelet margination can be explained by RBC-enhanced shear-induced diffusion of platelets in the RBC-filled region combined with platelet trapping in the RBC-free region. A simple continuum model is introduced based on the proposed mechanism. Using an experimental correlation for effective diffusivity in blood, the continuum model can recover experimental results from the literature over a wide range of tube diameters. We created an in vitro experimental model of thrombosis with and without RBCs. Surprisingly, we found that rapid thrombus growth does not require enhanced platelet transport in the presence of RBCs at high shear. Instead, our results suggest that thrombus growth rate at high shear is dependent on the availability of vWF-A1 domains as opposed to convective transport of platelets. Finally, we obtained empirical correlations for thrombus growth and lag time based on flow parameters by using an in vitro model of thrombosis. We developed a simple model for predicting thrombus formation using the obtained empirical correlations. We demonstrated the capability of the model in predicting thrombus formation over a wide range of experimental geometries. This model may be useful for designing blood-contacting devices to avoid unwanted thrombosis.
5

Collective phenomena in blood suspensions / Phénomènes collectifs dans les suspensions sanguines

Chachanidze, Revaz 27 November 2018 (has links)
Ce travail a été réalisé dans l’I. R. P. H. E. (Institut de Recherche sur les Phénomènes Hors Équilibre), unité de recherche de l’Université d’Aix-Marseille en collaboration avec l’Université de la Sarre, la Faculté de Physique Expérimentale. Cette étude est consacrée à une meilleure compréhension de la microcirculation du sang in vitro, ainsi que des phénomènes collectifs qui prennent place dans la microcirculation. Il se concentre principalement sur la margination en fonction du contrast de rigidité dans une suspension de globules rouges. L’expérience modale a été développée pour étudier la margination, causée exclusivement par le contraste de la déformabilité entre les deux sous-populations de globules rouges: les saines et les rigidifiées / This work was carried out in collaboration between I.R.P.H.E. (Institut de Recherche sur les Phénomènes Hors Équilibre), research unit of Aix-Marseille University and University of Saarland, Faculty of Experimental Physics (Naturwissenschaftlich-Technische Fakultät der Universität des Saarlandes) and aims to investigate microcirculatory hydrodynamics of blood in vitro. The study is dedicated to better understanding of complex collective phenomena that take place in microcirculation of blood through microfluidic in vitro experiments. It mainly focuses rigidity based margination in suspension of RBCs. For this purpose, model experiment was developed to examine margination caused exclusively by contrast of deformability between two sub-populations of RBCs
6

Numerical simulation of cellular blood flow

Reasor, Daniel Archer 29 August 2011 (has links)
In order to simulate cellular blood, a coarse-grained spectrin-link (SL) red blood cell (RBC) membrane model is coupled with a lattice-Boltzmann (LB) based suspension solver. The LB method resolves the hydrodynamics governed by the Navier--Stokes equations while the SL method accurately models the deformation of RBCs under numerous configurations. This method has been parallelized using Message Passing Interface (MPI) protocols for the simulation of dense suspensions of RBCs characteristic of whole blood on world-class computing resources. Simulations were performed to study rheological effects in unbounded shear using the Lees-Edwards boundary condition with good agreement with rotational viscometer results from literature. The particle-phase normal-stress tensor was analyzed and demonstrated a change in sign of the particle-phase pressure from low to high shear rates due to RBCs transitioning from a compressive state to a tensile state in the flow direction. Non-Newtonian effects such as viscosity shear thinning were observed for shear rates ranging from 14-440 inverse seconds as well as the strong dependence on hematocrit at low shear rates. An increase in membrane bending energy was shown to be an important factor for determining the average orientation of RBCs, which ultimately affects the suspension viscosity. The shear stress on platelets was observed to be higher than the average shear stress in blood, which emphasizes the importance of modeling platelets as finite particles. Hagen-Poiseuille flow simulations were performed in rigid vessels for investigating the change in cell-depleted layer thickness with shear rate, the Fåhraeus-Linqvist effect, and the process of platelet margination. The process of platelet margination was shown to be sensitive to platelet shape. Specifically, it is shown that lower aspect ratio particles migrate more rapidly than thin disks. Margination rate is shown to increase with hematocrit, due to the larger number of RBC-platelet interactions, and with the increase in suspending fluid viscosity.
7

Faktory sociálního vyloučení na trhu práce / The factors of social exclusion on the labour market

Caithamlová, Eva January 2009 (has links)
The dissertation "The Factors of Social Exclusion on the Labour Market" is aimed on groups of people who have for some reason complicated access to the labour market - women, elder people, people with disabilities, Roma people, foreigners, and partly on disintegrated persons (particularly people after imprisonment). It discourses their position on the Czech labour market and describes problems they often face. That is especially low rate of employment and lack of appropriate jobs. There are mentioned measure proposals that could improve the situation of people excluded from the labour market, and the European Union policy in this sector too. Attention is also contributed to the concept of social exclusion, dimensions and mechanisms of social exclusion and social inclusion. The dissertation refers to the labour market and factors influencing the labour market margination, law regulations of discrimination on the labour market (in the Czech Republic and the European Union).
8

The Effect of Particle Size and Shape on the In Vivo Journey of Nanoparticles

Toy, Randall 12 June 2014 (has links)
No description available.

Page generated in 0.0936 seconds