Return to search

Differences in Thermal Quality Affect Investment in Thermoregulation by Lizards

Body temperature affects physiological processes and, consequently, has a large impact on fitness. Lizards need to thermoregulate behaviourally to maintain their body temperature within a range that maximizes performance, but there are costs associated with thermoregulation. The thermal quality of an environment is a major cost of thermoregulation because it directly affects the time and energy that must be invested by an individual to achieve and maintain an optimal body temperature for performance. According to the cost-benefit model of thermoregulation, lizards should only thermoregulate when the benefits outweigh the costs of doing so. Thus, in habitats of poor thermal quality, individuals should thermoregulate less. Using two systems, an elevational gradient and a pair of habitats that vary in the amount of solar radiation they receive, I tested the hypothesis that investment in thermoregulation by lizards is dictated by the associated costs of thermoregulating. Temperature, and thus thermal quality, decreases with elevation. I found a significant positive relationship between elevation and effectiveness of thermoregulation of Yarrow’s spiny lizards (Sceloporus jarrovii). When comparing thermoregulation of ornate tree lizards (Urosaurus ornatus) living in the thermally superior open-canopy wash habitat or the closed-canopy upland habitat, I found that habitat type was a significant predictor of accuracy of body temperature. In the poorer quality habitat, lizards had smaller deviations of body temperature from their preferred temperature range. Overall, I conclude that the thermal quality of a lizards’ environment impacts their thermoregulation in the opposite direction than predicted by the cost-benefit model of thermoregulation. This suggests that the disadvantages of thermoconformity may be greater than the costs thermoregulating as habitats become more thermally challenging.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/39115
Date29 April 2019
CreatorsLymburner, Alannah
ContributorsBlouin-Demers, Gabriel
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.003 seconds