Return to search

Neuro-Fuzzy Grasp Control for a Teleoperated Five Finger Anthropomorphic Robotic Hand

Robots should offer a human-like level of dexterity when handling objects if humans are to be replaced in dangerous and uncertain working environments. This level of dexterity for human-like manipulation must come from both the hardware, and the control. Exact replication of human-like degrees of freedom in mobility for anthropomorphic robotic hands are seen in bulky, costly, fully actuated solutions, while machine learning to apply some level of human-like dexterity in underacted solutions is unable to be applied to a various array of objects. This thesis presents experimental and theoretical contributions of a novel neuro-fuzzy control method for dextrous human grasping based on grasp synergies using a Human Computer Interface glove and upgraded haptic-enabled anthropomorphic Ring Ada dexterous robotic hand. Experimental results proved the efficiency of the proposed Adaptive Neuro-Fuzzy Inference Systems to grasp objects with high levels of accuracy.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/42563
Date20 August 2021
CreatorsWelyhorsky, Maxwell Joseph
ContributorsPetriu, Emil
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0026 seconds