Return to search

Ignition and Flame Stabilization in n-Dodecane Turbulent Premixed Flames at Compression Ignition Engine Conditions

Controlling ignition timing and flame stabilization is one of the most outstanding challenges limiting the development of modern, efficient and low-emission compression ignition engines (CIEs). In this study, the role of turbulence on two-stage ignition dynamics and subsequent flame stabilization at diesel engine conditions is assessed by performing direct numerical simulations in a simplified inflow-outflow premixed configuration. The thermochemical conditions are chosen to match those of the most reactive mixture in the Engine Combustion Network’s n-dodecane Spray A flame (temperature of 813 K, pressure of 60 atm, equivalence ratio of 1.3, and with 15% vol. O2 in the ambient gas). Inflow velocities 4 to 16 times larger than the laminar flame speed are considered. As a result, in the absence of turbulence, ignition and flame stabilization are controlled by advection and chemistry, diffusion being negligible. Ignition delays match those of the homogeneous reactor and both the cool flame, due to low-temperature chemistry (LTC), and the hot flame, due to high-temperature chemistry (HTC), are spontaneous ignition fronts. Turbulence alters this picture in two ways. First, the second-stage (HTC) ignition delay is increased considerably, in contrast with the first-stage (LTC) ignition delay, which remains virtually unaffected. Second, a sufficiently high turbulence intensity makes the cool spontaneous ignition front transition to a cool deflagration which moves upstream to the inlet, while the hot flame is pushed downstream, still stabilized by spontaneous ignition. The latter phenomenon is caused by the reduced reactivity of LTC products as the cool flame transitions from spontaneous ignition to deflagration. Further increasing the turbulence intensity leads to both cool and hot flames transitioning to deflagrations. For the hot flame, the mechanism governing this transition is the increase in magnitude of progress variable gradient under increased turbulence or reduced inflow velocity, while in cool flames it is mainly due to the reduction in chemical source terms. In addition to turbulence intensity, the role of inflow velocity, integral length scale, and oxygen concentration level on this transition is assessed and modeling challenges are discussed. Finally, a chemical explosive mode analysis is provided to further characterise the ignition and transition phenomena. The present results highlight important fundamental roles of turbulence expected to modulate CIE combustion dynamics.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/42945
Date22 November 2021
CreatorsFarjam, Samyar
ContributorsRadulescu, Matei
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0139 seconds