• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 9
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudo experimental de chamas difusivas livres turbulentas de gás natural submetidas a oscilações acústicas

Rocha, Ana Maura Araujo [UNESP] 31 August 2007 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:35:41Z (GMT). No. of bitstreams: 0 Previous issue date: 2007-08-31Bitstream added on 2014-06-13T19:46:39Z : No. of bitstreams: 1 rocha_ama_dr_guara.pdf: 5646365 bytes, checksum: 36f5cf9b692f786dcf5678d3b5c3474f (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / O processo de queima que se utiliza um campo acústico (combustão pulsante) para obter oscilação acústica, apresenta algumas vantagens já estabelecidas na literatura, tendo-se por referência o processo de queima convencional, podendo ser o campo acústico induzido por atuadores externos ou não. Exemplos destas vantagens incluem a minimização da emissão de poluentes e dos custos de investimento/operação, incluindo a redução de consumo de combustíveis e a maximização das taxas de transferência convectiva de calor. Entretanto, para sua aplicação prática, torna-se necessário o estudo dos fenômenos que envolvem o processo de combustão, ainda não devidamente equacionados. Desta forma, o objetivo principal deste trabalho é realizar uma criteriosa investigação experimental sobre como os diversos parâmetros que controlam ou descrevem a situação de queima em uma chama difusiva livre turbulenta de gás natural se comportam com a presença de um campo acústico. Para tal foi adaptada uma instalação (queimador de Delft), disponível no Laboratório Associado de Combustão e Propulsão do Instituto Nacional de Pesquisas Espaciais, com um sistema de atuação acústica. Tal sistema operacional possui chama turbulenta difusiva de gás natural, tipo jato, tendo sido escolhido, devido à sua geometria de chama ser mais simples e por apresentar na literatura um banco de dados já disponível, no que se refere aos processos físicos e químicos que ali se desenvolvem na situação sem atuação acústica, o que possibilita uma melhor compreensão da influência acústica sobre tais processos. / A burning process using an acoustic field to obtain pulse combustion presents potential advantages over the conventional combustion process. The acoustic field can be introduced by external actuators or not. Examples of these advantages include minimization of pollutants emission rates as well as of investment and operation cost reductions and maximization of convective heat transfer rates. However, for practical applications of pulse combustion it is necessary to further study the phenomena involved in this process, which are still not properly known yet. The main objective of this work is to conduct a though experimental investigation on the parameters that control and describe combustion in a free turbulent diffusion flame of natural gas under an acoustic field. An existing Delft burner was adapted for the study. This system was chosen because, besides its simplicity, there is also an extensive data set in the literature, describing the physical and chemical processes that occur under conventional combustion operation, allowing a better understanding of the influence of the acoustic field.
2

Ignition and Flame Stabilization in n-Dodecane Turbulent Premixed Flames at Compression Ignition Engine Conditions

Farjam, Samyar 22 November 2021 (has links)
Controlling ignition timing and flame stabilization is one of the most outstanding challenges limiting the development of modern, efficient and low-emission compression ignition engines (CIEs). In this study, the role of turbulence on two-stage ignition dynamics and subsequent flame stabilization at diesel engine conditions is assessed by performing direct numerical simulations in a simplified inflow-outflow premixed configuration. The thermochemical conditions are chosen to match those of the most reactive mixture in the Engine Combustion Network’s n-dodecane Spray A flame (temperature of 813 K, pressure of 60 atm, equivalence ratio of 1.3, and with 15% vol. O2 in the ambient gas). Inflow velocities 4 to 16 times larger than the laminar flame speed are considered. As a result, in the absence of turbulence, ignition and flame stabilization are controlled by advection and chemistry, diffusion being negligible. Ignition delays match those of the homogeneous reactor and both the cool flame, due to low-temperature chemistry (LTC), and the hot flame, due to high-temperature chemistry (HTC), are spontaneous ignition fronts. Turbulence alters this picture in two ways. First, the second-stage (HTC) ignition delay is increased considerably, in contrast with the first-stage (LTC) ignition delay, which remains virtually unaffected. Second, a sufficiently high turbulence intensity makes the cool spontaneous ignition front transition to a cool deflagration which moves upstream to the inlet, while the hot flame is pushed downstream, still stabilized by spontaneous ignition. The latter phenomenon is caused by the reduced reactivity of LTC products as the cool flame transitions from spontaneous ignition to deflagration. Further increasing the turbulence intensity leads to both cool and hot flames transitioning to deflagrations. For the hot flame, the mechanism governing this transition is the increase in magnitude of progress variable gradient under increased turbulence or reduced inflow velocity, while in cool flames it is mainly due to the reduction in chemical source terms. In addition to turbulence intensity, the role of inflow velocity, integral length scale, and oxygen concentration level on this transition is assessed and modeling challenges are discussed. Finally, a chemical explosive mode analysis is provided to further characterise the ignition and transition phenomena. The present results highlight important fundamental roles of turbulence expected to modulate CIE combustion dynamics.
3

Measurements and modeling of turbulent consumption speeds of syngas fuel blends

Venkateswaran, Prabhakar 19 February 2013 (has links)
Increasingly stringent emission requirements and dwindling petroleum reserves have generated interest in expanding the role of synthesis gas (syngas) fuels in power generation applications. Syngas fuels are the product of gasifying organic-based feedstock such as coal and biomass and are composed of mainly H₂ and CO. However, the use of syngas fuels in lean premixed gas turbine systems has been limited in part because the behavior of turbulent flames in these mixtures at practical gas turbine operating conditions are not well understood. This thesis presents an investigation of the influence of fuel composition and pressure on the turbulent consumption speed, ST,GC, and the turbulent flame brush thickness, FBT, for these mixtures. ST,GC and FBT are global parameters which represent the average rate of conversion of reactants to products and the average heat release distribution of the turbulent flame respectively. A comprehensive database of turbulent consumption speed measurements obtained at pressures up to 20 atm and H₂/CO ratios of 30/70 to 90/10 by volume is presented. There are two key findings from this database. First, mixtures of different H₂/CO ratios but with the same un-stretched laminar flame speeds, SL,0, exposed to the same turbulence intensities, u'rms , have different turbulent consumption speeds. Second, higher pressures augment the turbulent consumption speed when SL,0 is held constant across pressures and H₂/CO ratios. These observations are attributed to the mixture stretch sensitivities, which are incorporated into a physics-based model for the turbulent consumption speed using quasi-steady leading points concepts. The derived scaling law closely resembles Damkhler's classical turbulent flame speed scaling, except that the maximum stretched laminar flame speed, SL,max, arises as the normalizing parameter. Scaling the ST,GC data by SL,max shows good collapse of the data at fixed pressures, but systematic differences between data taken at different pressures are observed. These differences are attributed to non-quasi-steady chemistry effects, which are quantified with a Damkhler number defined as the ratio of the chemical time scale associated with SL,max and a fluid mechanic time scale. The observed scatter in the normalized turbulent consumption speed data correlates very well with this Damkhler number, suggesting that ST,GC can be parameterized by u'rms/SL,max and the leading point Damkhler number. Finally, a systematic investigation of the influence of pressure and fuel composition on the flame brush thickness is presented. The flame brush thickness is shown to be independent of the H₂/CO ratio if SL,0 is held constant across the mixtures. However, increasing the equivalence ratio for lean mixtures at a constant H₂/CO ratio, results in a thicker flame brush. Increasing the pressure is shown to augment the flame brush thickness, a result which has not been previously reported in the literature. Classical correlations based on turbulent diffusion concepts collapse the flame brush thickness data obtained at fixed u'rms/U₀ and pressure reasonably well, but systematic differences exist between the data at different u'rms/U₀ and pressures.
4

拡散火炎におけるNOxの非定常生成特性の解明と組合せ予測手法の検証

清水, 昭博, SHIMIZU, Akihiro, 山下, 博史, YAMASHITA, Hiroshi, 高石, 良伸, TAKAISHI, Yoshinobu, 趙, 黛青, ZHAO, Daiqing 02 1900 (has links)
No description available.
5

Etude des particules de suie dans les flammes de kérosène et de diester / Study of soots particles in kerosene and biofuel flames

Maugendre, Mathieu 21 December 2009 (has links)
Les suies se présentent sous la forme de fines particules carbonées de diamètres compris entre quelques dizaines de nanomètres à quelques micromètres. Dans l’atmosphère, elles entraînent des enjeux climatiques, de par leurs propriétés radiatives, mais aussi des enjeux sanitaires, du fait de leur faible taille : elles pénètrent facilement dans le système respiratoire et même, pour les plus fines, dans le système sanguin. L’objectif est de parfaire les connaissances sur les propriétés physiques des suies produites par différents systèmes de combustion. C’est dans le but de mieux comprendre l’influence des systèmes de combustion, faisant intervenir des temps de séjours différents, des propriétés de turbulence, d’oxydation et de pression distinctes que nous avons choisi d’étudier trois types de combustion spécifiques : d’une part, des flammes de diffusion laminaires à pression atmosphérique, initiées dans un brûleur développé au cours de ces travaux ; d’autre part, une flamme de diffusion laminaire sous atmosphère pressurisée (3 à 5 bars) ; enfin, une flamme turbulente produite par une chambre tubulaire, elle aussi sous atmosphère pressurisée (1.2 à 3 bar). Un autre enjeu de ce travail était d’approfondir les informations relatives à la combustion de carburants liquides, à savoir le kérosène et le diester. Les travaux effectués visent à déterminer les caractéristiques morphologiques (dimension fractale, diamètre des monomères...) et l’indice complexe m* des suies issues des différents systèmes de combustion. La technique employée pour la mesure de l’indice complexe de réfraction des suies, repose sur l’analyse d’une partie des fumées produites par les flammes. Ces fumées sont acheminées dans un banc d’analyse permettant la mesure de signaux d’extinction et de diffusion, ainsi que de distributions de taille des suies. Par ailleurs, des analyses de clichés obtenus par microscope en transmission d’électrons (TEM) permettent l’obtention d’informations sur la morphologie des agrégats de suies. L’utilisation de la théorie de la diffusion de la lumière pour des agrégats fractals dans la limite de Rayleigh (RDG-FA) permet d’estimer à partir de ces données deux fonctions de l’indice complexe E(m) et F(m), et ainsi de retrouver m*. / Soot are carbonaceous fine particles, which diameters are ranged from a few nanometres to a few micrometers. They have an impact on climate, due to their radiative properties, as well as on health, due to their small size. That’s why particulate matter is an important concern. In order to gain a better understanding of the influence of the combustion devices, which implies specific residence time and also specific turbulence, oxidation and pressure properties, we studied three specific kinds of combustion : first, laminar diffusion flames at atmospheric pressure ; then, a laminar diffusion flame a high pressures (3 to 5 bar) ; finally, a turbulent flame produced in a combustor at high pressures (1,2 to 3 bar). Another objective of this work was to improve the knowledge about soot produced by the combustion of liquid fuels, namely kerosene and biofuel. We studied morphological properties (fractal dimension, primary particle size…) and the refractive index m* of soot produced by these combustion systems. The technique employed to characterize the soot refractive index is based on the analysis of a part of smokes produced by flames. These are transported towards two optical cells, so that extinction and scattering coefficients can be measured, in addition to soot size distributions. Furthermore, a morphological characterization of the aggregates is conducted, using transmission electron microscopy (TEM) photographs. Rayleigh-Debye-Gans theory for fractal aggregates is used to determine two functions of the refractive index E(m) and F(m), so that m* can be deduced.
6

High Fidelity Numerical Simulations and Diagnostics of Complex Reactive Systems

Song, Wonsik 03 1900 (has links)
To contribute to the design of next-generation high performance and low emission combustion devices, this study provides a series of high fidelity numerical simulations of turbulent premixed combustion and autoignition with different clean fuels. The first part of the thesis consists of the direct numerical simulations (DNS) of the lean hydrogen-air turbulent premixed flames at a wide range of Karlovitz number (Ka) conditions up to Ka = 1,126. Turbulence-chemistry interaction is discussed in terms of statistical analysis of the turbulent flame speed and flame structure. Global and local flame speed are separately studied through the fuel consumption speed and displacement speed of the flame front, respectively, and the results are compared with the reference laminar flames as well as similar studies in the literature. The global flame structure is assessed via cross-sectional and conditional averages, and modeling implication is further discussed. Detailed analysis of the local flame structure along the positive and negative curvature is also conducted, providing an understanding of the different behavior of local heat release response. Finally, as the modeling perspectives for Reynolds-averaged Navier-Stokes (RANS) and large eddy simulations (LES), the mean quantities of major species, intermediate species, density, the reaction rate of the progress variable, and heat release rate are assessed in the context of the probability density function (PDF). The second part of the thesis consists of applications of the advanced mathematical tool called the computational singular perturbation (CSP). A skeletal chemical mechanism is developed using the CSP algorithm for the autoignition of methanol and dimethyl ether blends, and the ignition delay time and laminar flame speed are validated for a wide range of mixture conditions. A series of autoignition simulations are carried out in the canonical counter flow mixing layer using the developed skeletal mechanism, and detailed analyses of the autoignition for the methanol and dimethyl ether blends at a wide range of strain rate conditions are provided using the CSP diagnostics tools for a wide range of chemical and fluid combinations.
7

拡散火炎におけるNOxの非定常生成特性の解明と組合せ予測手法の検証 (燃料希釈および酸化剤予熱条件への拡張)

高石, 良伸, TAKAISHI, Yoshinobu, 山下, 博史, YAMASHITA, Hiroshi 10 1900 (has links)
No description available.
8

Dynamics of turbulent premixed flames in acoustic fields

Hemchandra, Santosh 13 May 2009 (has links)
This thesis describes computational and theoretical studies of fundamental physical processes that influence the heat-release response of turbulent premixed flames to acoustic forcing. Attached turbulent flames, as found in many practical devices, have a non-zero mean velocity component tangential to the turbulent flame brush. Hence, flame surface wrinkles generated at a given location travel along the flame sheet while being continuously modified by local flow velocity disturbances, thereby, causing the flame sheet to respond in a non-local manner to upstream turbulence fluctuations. The correlation length and time scales of these flame sheet motions are significantly different from those of the upstream turbulence fluctuations. These correlation lengths and times increase with turbulence intensity, due to the influence of kinematic restoration. This non-local nature of flame sheet wrinkling (called 'non-locality') results in a spatially varying distribution of local consumption speed (i.e. local mass burning rate) even when the upstream flow statistics are isotropic and stationary. Non-locality and kinematic restoration result in coupling between the responses of the flame surface to coherent acoustic forcing and random turbulent fluctuations respectively, thereby, causing the coherent ensemble averaged component of the global heat-release fluctuation to be different in magnitude and phase from its nominal (laminar) value even in the limit of small coherent forcing amplitudes (i.e. linear forcing limit). An expression for this correction, derived from an asymptotic analysis to leading order in turbulence intensity, shows that its magnitude decreases with increasing forcing frequency because kinematic restoration limits flame surface wrinkling amplitudes. Predictions of ensemble averaged heat release response from a different, generalized modeling approach using local consumption and displacement speed distributions from unforced analysis shows good agreement with the exact asymptotic result at low frequencies.
9

The Effect of Soot Models in Oxy-Coal Combustion Simulations

Brinkerhoff, Kamron Groves 16 March 2022 (has links)
Soot in coal combustion simulations is often ignored due to its computational complexity, despite significant effects on flame temperature and radiation. In this research, a 40 kW oxy-coal combustion system is modeled using Large Eddy Simulations (LES) and a semi-empirical monodisperse coal soot model. Simulation results are compared to experimental measurements of temperature, species concentrations, and soot concentration. Cases where soot is modeled are compared with cases where soot is neglected to determine the accuracy benefits of modeling soot. The simulations were able to replicate experimental results within an acceptable level of error. Including soot in the simulations did not consistently increase accuracy for the simulation setup and modeling assumptions used in this research.
10

Modélisation multiphysique de flammes turbulentes suitées avec la prise en compte des transferts radiatifs et des transferts de chaleur pariétaux. / Multi-physics modelling of turbulent sooting flames including thermal radiation and wall heat transfer

Rodrigues, Pedro 08 June 2018 (has links)
Les simulations sont utilisées pour concevoir des chambres de combustion industrielles robustes et peu polluantes. Parmi les polluants, l’émission de particules de suies constitue une question sociétale et une priorité politico- industrielle, en raison de leurs impacts néfastes sur la santé et l'environnement. La taille des particules de suies joue un rôle important sur ces effets. Il est donc important de prévoir non seulement la masse totale ou le nombre de particules générées, mais également leur distribution en taille (PSD). De plus, les suies peuvent jouer un rôle important dans le rayonnement thermique. Dans des configurations confinées, la prédiction des transferts de chaleur est une question clé pour augmenter la robustesse des chambres de combustion. Afin de déterminer correctement ces transferts, les flux radiatifs et de conducto-convectifs aux parois doivent être pris en compte. Enfin, la température pariétale est aussi contrôlée par les transferts conjugués de chaleur entre les domaines fluides et solides. L’ensemble de ces transferts thermiques impactent la stabilisation de la flamme, la formation de polluants et la production de suies elle-même. Il existe donc un couplage complexe entre ces phénomènes et la simulation d'un tel problème multiphysique est aujourd'hui reconnu comme un important défi. Ainsi, l'objectif de cette thèse est de développer une modélisation multiphysique permettant la simulation de flammes suitées turbulentes avec le rayonnement thermique et les transferts conjugués de chaleur associés aux parois. Les méthodes retenues sont basées sur la Simulation aux Grandes Échelles (LES), une description en taille des suies, des transferts conjugués et un code Monte Carlo pour le rayonnement. La combinaison de telles approches est réalisable grâce aux ressources de calcul aujourd’hui disponibles afin d’obtenir des résultats de référence. Le manuscrit est organisé en trois parties. La première partie se concentre sur le développement d'un modèle détaillé pour la description de la production de suies dans les flammes laminaires. Pour cela, la méthode sectionnelle est retenue ici car elle permet la description de la PSD. La méthode est validée sur des flammes laminaires éthylène/air. Dans la deuxième partie, un formalisme LES spécifique à la méthode sectionnelle est développé et utilisé pour étudier deux flammes turbulentes : une flamme jet non-prémélangée et une flamme swirlée pressurisée confinée. Les champs de température et de fraction volumique de suies sont comparés aux données expérimentales. De bonnes prédictions sont obtenues et l’évolution des particules de suies dans de telles flammes est analysée à travers l'étude de l’évolution de leur PSD. Dans ces premières simulations, les pertes de chaleur aux parois reposent sur des mesures expérimentales de la température aux parois, et un modèle de rayonnement simple. Dans la troisième partie, une approche Monte Carlo permettant de résoudre l'équation de transfert radiatif avec des propriétés radiatives détaillées des phases gazeuse et solide est utilisée et couplée au solveur LES. Cette approche est appliquée à l'étude de la flamme jet turbulente. La prédiction des flux thermiques est comparée aux données expérimentales et la nature des transferts radiatifs est étudiée. Ensuite, une modélisation couplée de la combustion turbulente prenant en compte la production de suies, les transferts conjugués de chaleur et le rayonnement thermique est proposée en couplant les trois codes dédiés. Cette stratégie est appliquée pour la simulation du brûleur pressurisé confiné. L'approche proposée permet à la fois de prédire la température des parois et la bonne stabilisation de la flamme. Les processus de formation de suies se révèlent être affectés par la modélisation des transferts thermiques. Ceci souligne l’importance d’une description précise de ces transferts thermiques dans les développements futurs de modèles de production de suies et leur validation. / Numerical simulations are used by engineers to design robust and clean industrial combustors. Among pollutants, soot control is an urgent societal issue and a political-industrial priority, due to its harmful impact on health and environment. Soot particles size plays an important role in its negative effect. It is therefore important to predict not only the total mass or number of emitted particles, but also their population distribution as a function of their size. In addition, soot particles can play an important role in thermal radiation. In confined configurations, controlling heat transfer related to combustion is a key issue to increase the robustness and the life cycle of combustors by avoiding wall damages. In order to correctly determine these heat losses, radiative and wall convective heat fluxes must be accounted for. They depend on the wall temperature, which is controlled by the conjugate heat transfer between the fluid and solid domains. Heat transfer impacts the flame stabilization, pollutants formation and soot production itself. Therefore, a complex coupling exists between these phenomena and the simulation of such a multi-physics problem is today recognized as an extreme challenge in combustion, especially in a turbulent flow, which is the case of most industrial combustors. Thus, the objective of this thesis is to develop a multi-physics modeling enabling the simulation of turbulent sooting flames including thermal radiation and wall heat transfer. The retained methods based on Large-Eddy Simulation (LES), a soot sectional model, conjugate heat transfer, a Monte Carlo radiation solver are combined to achieve a stateof- the-art framework. The available computational resources make nowadays affordable such simulations that will yield present-day reference results. The manuscript is organized in three parts. The first part focuses on the definition of a detailed model for the description of soot production in laminar flames. For this, the sectional method is retained here since it allows the description of the particle size distribution (PSD). The method is validated on laminar premixed and diffusion ethylene/air flames before analyzing the dynamics of pulsed diffusion flames. In the second part, an LES formalism for the sectional method is developed and used to investigate two different turbulent flames: a non-premixed jet flame and a confined pressurized swirled flame. Predicted temperature and soot volume fraction levels and topologies are compared to experimental data. Good predictions are obtained and the different soot processes in such flames are analyzed through the study of the PSD evolution. In these first simulations, wall heat losses rely on experimental measurements of walls temperature, and a coarse optically-thin radiation model. In the third part, to increase the accuracy of thermal radiation description, a Monte Carlo approach enabling to solve the Radiative Transfer Equation with detailed radiative properties of gaseous and soot phases is used and coupled to the LES solver. This coupled approach is applied for the simulation of the turbulent jet flame. Quality of radiative fluxes prediction in this flame is quantified and the nature of radiative transfers is studied. Then, a whole coupled modeling of turbulent combustion accounting for soot, conjugate heat transfer and thermal radiation is proposed by coupling three dedicated codes. This strategy is applied for a high-fidelity simulation of the confined pressurized burner. By comparing numerical results with experimental data, the proposed approach enables to predict both the wall temperature and the flame stabilization. The different simulations show that soot formation processes are impacted by the heat transfer description: a decrease of the soot volume fraction is observed with increasing heat losses. This highlights the requirement of accurate description of heat transfer for future developments of soot models and their validation.

Page generated in 0.0732 seconds