Παρασκευή και μελέτη διμεταλλικών και τριμεταλλικών ηλεκτροκαταλυτών για κυψελίδες καυσίμου πολυμερικής μεμβράνης

Το Η2 είναι το ελαφρύτερο και πλέον άφθονο στοιχείο στη φύση. Βρίσκεται παντού στη γη, στο νερό, στα ορυκτά καύσιμα και σε όλα τα έμβια όντα. Αν το Η2 αξιοποιηθεί κατάλληλα και χρησιμοποιηθεί για τροφοδοσία των κελιών καυσίμου, θα ελαχιστοποιηθεί η εξάρτηση του σύγχρονου πολιτισμού από τα ορυκτά καύσιμα, με συνεπακόλουθο τη μείωση των εκπομπών βλαβερών αερίων στην ατμόσφαιρα.
Η χαμηλή θερμοκρασία λειτουργίας των κελιών καυσίμου πολυμερούς ηλεκτρολύτη (PEMFCs) προσφέρει πολλά πλεονεκτήματα και σε συνδυασμό με την υψηλή πυκνότητα ισχύος που αποδίδουν, τα καθιστά κύριους υποψήφιους για εφαρμογή στην αυτοκίνηση. Ωστόσο, η χαμηλή θερμοκρασία εγείρει και σημαντικά προβλήματα, όπως η χρήση ευγενών μετάλλων για την επιτάχυνση των αντιδράσεων και η ευαισθησία σε φαινόμενα δηλητηρίασης. Το κυριότερο δηλητήριο είναι το CO, βασικό παραπροϊόν των διεργασιών παραγωγής H2 από τους υδρογονάνθρακες, οι οποίοι προς το παρόν αποτελούν την κύρια πηγή του.
Στην παρούσα διδακτορική διατριβή εξετάστηκαν τα φαινόμενα δηλητηρίασης από το CO της ανόδου του PEMFC. Καθώς το CO δεσμεύεται ισχυρότερα στην επιφάνεια του Pt από το καύσιμο Η2, η παρουσία του στην τροφοδοσία ακόμα και σε ίχνη απενεργοποιεί δραματικά τη λειτουργία της ανόδου. Έτσι, μελετήθηκαν διμεταλλικά και τριμεταλλικά καταλυτικά συστήματα, βασισμένα στο Pt, για την πιθανή αντιμετώπιση του προβλήματος, διαμέσου εξασθένισης του δεσμού Pt-CO ή ενίσχυσης της ηλεκτροχημικής οξείδωσής του από το Η2Ο, που είναι άφθονο στο περιβάλλον ενός PEMFC.
Στο κεφάλαιο 1 περιγράφονται οι βιβλιογραφικές πληροφορίες για την τεχνολογία του Η2, όπως μέθοδοι παραγωγής του, καθαρισμού του και αποθήκευσης/μεταφοράς του.
Στο κεφάλαιο 2 αναφέρονται οι βασικές αρχές λειτουργίας των κελιών καυσίμου, όσον αφορά στη θερμοδυναμική και στην κινητική, στα είδη τους και στις πιθανές εφαρμογές τους.
Στο κεφάλαιο 3 γίνεται εκτενής περιγραφή των δομικών στοιχείων που απαρτίζουν ένα PEMFC, και βιβλιογραφική ανασκόπηση των καταλυτικών συστημάτων που έχουν μελετηθεί για τις βασικές αντιδράσεις.
Στο κεφάλαιο 4 περιγράφονται συνοπτικά οι μέθοδοι χαρακτηρισμού και ανάλυσης καθώς και οι πειραματικές διατάξεις που χρησιμοποιήθηκαν.
Στο κεφάλαιο 5 εξετάστηκε η επίδραση του υποστρώματος TiO2 στα χαρακτηριστικά του Pt, όσον αφορά την αλληλεπίδρασή του με το CO, σε διάταξη μονής κυψέλης καυσίμου. Παρουσιάστηκε αυξημένη ενεργότητα για την ηλεκτροοοξείδωση του CO και ασθενέστερη αλληλεπίδρασή του με την επιφάνεια του Pt, συντελώντας σε ενεργοποιημένη ρόφηση.
Στο κεφάλαιο 6 με φασματοσκοπία υπερύθρου μελετήθηκαν τα χαρακτηριστικά της ρόφησης/εκρόφησης του CO σε μια σειρά καταλυτών Pt-Mo σε υπόστρωμα TiO2. Παρουσία των οξειδίων του Mo η θερμοκρασία εκρόφησης του CO ήταν σημαντικά μειωμένη σε σχέση με μονομεταλλικό Pt, υποδεικνύοντας ασθενέστερο δεσμό του CO με την καταλυτική επιφάνεια. Ωστόσο, παρουσία H2 ο δεσμός ισχυροποιείται, με αποτέλεσμα η εκρόφηση να πραγματοποιείται σε υψηλότερη θερμοκρασία. Αυτό εξηγήθηκε με βάση την ανταγωνιστική αντίδραση του H2 με τις οξειδικές ομάδες, τόσο του υποστρώματος TiO2, όσο και των οξειδίων του Mo.
Στο κεφάλαιο 7 εξετάστηκε η οξείδωση του CO σε καταλύτη Pt4Mo/C, δεδομένου του αποσταθεροποιητικού ρόλου του Mo στα χαρακτηριστικά της αλληλεπίδρασης με το CO. Έτσι, αναγνωρίστηκε η ικανότητα των οξειδίων του Mo να διασπούν το Η2Ο σε δυναμικά που συμπίπτουν με τη λειτουργία της ανόδου ενός PEMFC, ενώ παρουσίασαν ενεργότητα για την οξείδωση του CO σε συνθήκες ανοιχτού κυκλώματος διαμέσου της αντίδρασης μετατόπισης με ατμό σε χαμηλή θερμοκρασία μέχρι και 60οC. Ωστόσο, η παραπάνω ιδιότητες δεν ήταν κατανεμημένες ομοιόμορφα στην καταλυτική επιφάνεια, παρά μόνο στη διεπιφάνεια Pt/MoOx, ενώ οι θέσεις μονομεταλλικού Pt παρουσίασαν έντονα φαινόμενα δηλητηρίασης. Επιπλέον, το Mo παρουσιάστηκε ευαίσθητο σε φαινόμενα διάλυσης στο όξινο υδατικό περιβάλλον του PEMFC για δυναμικά μεγαλύτερα από 0.2 V.
Στο κεφάλαιο 8 μελετήθηκε η αλληλεπίδραση του CO με τριμεταλλικό καταλύτη Pt-Ru-Co σε σύγκριση με εμπορικό PtRu/C. Ο τριμεταλλικός καταλύτης παρουσιάστηκε ενεργότερος, με χαμηλότερη φαινόμενη ενέργεια ενεργοποίησης για την οξείδωση ροφημένου CO, εμφανίζοντας ισχυρότερη εξάρτηση από το εφαρμοζόμενο δυναμικό. / Hydrogen is the lighter and more abundant element in nature. It is everywhere in earth, water, fossil fuels and in all the living creatures. If H2 can be properly extracted and utilized as a fuel in fuel cells, the dependence of the global economy on fossil fuels will be minimized, resulting in significant attenuation of the greenhouse gases emissions in the atmosphere.
The low operation temperature of the polymer electrolyte membrane fuel cells (PEMFCs) offers a lot of advantages. In combination with the high power density yielded by the PEMFCs renders them as the main candidates for application in automotive industry. However, the low temperature raises significant problems, such as the use of noble metals for the acceleration of the basic reactions and the susceptibility in poisoning phenomena. The basic poison is carbon monoxide (CO), one of the main side-products of H2 production from fossil fuels, which for the moment is the main source of H2.
In this thesis, the poisoning phenomena of the PEMFCs anode electrocatalysts from CO were investigated. Since CO is bounded on the surface of Pt stronger than the H2 fuel, its presence in the fuel feed in ppm levels deactivates the anode electrocatalyst. In order to eliminate this problem, bimetallic and ternary catalytic systems, based on Pt, were studied with the aim to reduce the Pt-CO bond strength or to promote the electrocatalytic oxidation of CO by water, which is abundant in the PEMFC environment.
In chapter 1 is reported the literature information about H2 technology, such as H2 production and cleaning methods and the transport and storage infrastructure.
In chapter 2, the basic thermodynamic and kinetic rules of fuel cells operation are referred together with the types of fuel cells and the possible applications.
In chapter 3 the structural characteristics of the PEMFCs are outlined and the basic catalytic systems that have been studied for the fuel cell reactions are reviewed.
The catalysts’ characterization methods, as well as the experimental procedures utilized in this thesis, are briefly described in chapter 4.
In chapter 5 the effect of TiO2 support on the CO chemisorption’s and oxidative properties of Pt was investigated in a single PEMFC configuration. The activity of the CO electrooxidation reaction was enhanced and the Pt-CO bond was destabilized comparing to a commercial Pt/C catalyst.
In chapter 6 the CO adsorption/desorption properties were studied by Infrared Spectroscopy, on a series of Pt-Mo catalysts supported on anatase TiO2. The presence of Mo oxides on the catalyst surface reduces significantly the CO desorption temperature in comparison to monometallic TiO2 supported Pt, suggesting the weak CO bonding on the catalytic surface. However, in the presence of H2, the Pt-CO bond strengthens, resulting in higher CO desorption temperature for all the catalysts tested. This was explained on the basis of competitive reaction of H2 with the oxidic surface species, originating from the TiO2 support and the surface Mo oxides.
The CO electrooxidation activity of a Pt4Mo/C catalyst is described in chapter 7, considering the destabilizing effect of Mo on the Pt-CO bond. The surface Mo oxide species were able to dissociate H2O at potential values that coincide with the potential window of the PEMFC anode operation. This catalyst oxidized CO under open circuit conditions through the water gas shift reaction and at temperature as low as 60oC. However, the catalytic activity was not homogeneously distributed on the entire catalyst surface, but it was located at the Pt/MoOx interface, with the monometallic Pt sites to be strongly susceptible to CO poisoning. Furthermore, Mo was sensitive to dissolution phenomena in the hydrous acidic environment of the PEMFC for potentials higher than 0.2 V vs. rhe.
Finally, in chapter 8 is described the interaction of CO with a ternary Pt-Ru-Co catalyst surface, in comparison to a commercial PtRu/C catalyst. The ternary catalyst was more active for the adsorbed CO electrooxidation, with a lower apparent activation energy than the bimetallic commercial one. The ternary catalyst exhibited zero reaction order with respect to CO partial pressure, while the PtRu/C showed negative reaction order due to competitive adsorption of CO and oxidic species for the same catalytic sites. The kinetic rate constant of the CO electrooxidation reaction for the ternary catalyst showed stronger dependence on the applied potential.

Identiferoai:union.ndltd.org:upatras.gr/oai:nemertes:10889/3281
Date07 July 2010
CreatorsΠαπακωνσταντίνου, Γεώργιος
ContributorsΒαγενάς, Κωνσταντίνος, Βαγενάς, Κωνσταντίνος, Βερύκιος, Ξενοφών, Μπεμπέλης, Συμεών, Νεοφυτίδης, Στυλιανός, Λυκουργιώτης, Αλέξης, Σιώκου, Αγγελική, Τσιπλακίδης, Δημήτριος
Source SetsUniversity of Patras
Languagegr
Detected LanguageGreek
TypeThesis
Rights0
RelationΗ ΒΚΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της.

Page generated in 0.0027 seconds