Return to search

Optimisation d'un microcapteur GaAs à ondes acoustiques et de sa biointerface pour la détection de pathogènes en milieu liquide

Cette thèse s’inscrit dans le cadre d’une cotutelle internationale entre l’institut FEMTO-ST à Besançon en France et l’université de Sherbrooke au Canada. Elle porte sur l’élaboration d’un biocapteur, potentiellement à bas coût, pour la détection de pathogènes dans les secteurs de l’agroalimentaire, de l’environnement et de la biosécurité. Le modèle biologique visé est la bactérie Escherichia coli, dont les souches pathogènes sont responsables, chaque année et partout dans le monde, de plusieurs crises sanitaires liées à une mauvaise gestion des produits de consommation ou des installations de conditionnement ou de traitements de ces produits. L’utilisation de biocapteurs pour une détection rapide, sensible et sélective d’organismes pathogènes répond ainsi aux inquiétudes quant aux risques d’infection pour la population. La structure du capteur consiste en une fine membrane en arséniure de gallium (GaAs) vibrant sur des modes de cisaillement d’épaisseur générés par champ électrique latéral via les propriétés piézoélectriques du matériau. Nous montrons dans ce travail que le biocapteur offre également des possibilités de microfabrication, de biofonctionnalisation et de régénération intéressantes pour la conception d’un dispositif à bas coût. Le transducteur a été réalisé via des technologies de microfabrication utilisées en salle blanche avec une mise en parallèle des méthodes d’usinage par voie chimique et par plasma, l’objectif étant d’obtenir des membranes minces, planes et avec un état de surface de haute qualité. Une interface fluidique a été mise au point de façon à approvisionner de manière homogène le capteur en fluide. Par ailleurs, nos études se sont portées sur la fonctionnalisation biochimique de l’interface de bioreconnaissance sur l’arséniure de gallium et sa caractérisation fine par les techniques de spectroscopie infrarouge à transformée de Fourier (FTIR). Les résultats de cette étude ont permis de progresser sur la compréhension fondamentale du phénomène d’auto-assemblage de molécules sur GaAs. Un effort particulier a été mis en œuvre pour développer des biointerfaces de haute densité offrant une immobilisation optimale des immunorécepteurs biologiques. Parmi les différentes méthodes de régénération de la biointerface, le procédé de photo-oxydation UV en milieu liquide a démontré un fort potentiel pour des applications de capteurs réutilisables. Enfin, le transducteur a été caractérisé électriquement sous différents environnements. L’impact sur la réponse du résonateur des paramètres électriques, mécaniques et thermiques de ces milieux a été évalué afin de simuler le comportement du dispositif en condition réelle. / Abstract : This PhD thesis was realized in the context of a cotutelle program between FEMTO-ST institute in France and the University of Sherbrooke in Canada. The thesis addresses the development of a potentially low cost sensor dedicated for detection of pathogens in food industry processing, environment and biosafety sectors. Such a sensor could serve detection of Escherichia coli bacteria whose pathogenic strains are the source of foodborne illnesses encountered worldwide every year. Hence, biosensor devices are needed for a rapid, sensitive and selective detection of pathogens to avert, as soon as possible, any sources of contamination and prevent outbreak risks. The design of the sensor consists of a resonant membrane fabricated in gallium arsenide (GaAs) crystal that operates at shear modes of bulk acoustic waves generated by lateral field excitation. In addition to the attractive piezoelectric properties, as shown in this work, fabrication of a GaAs-based biosensor benefits from a well-developed technology of microfabrication of GaAs, as well as biofunctionalization and the possibility of regeneration that should result in cost savings of used devices. The transducer element was fabricated by using typical clean room microfabrication techniques. Plasma and wet etching were investigated and compared for achieving thin membranes with high quality surface morphology. At the same time, we designed and fabricated fluidic elements that allowed the construction of a flow cell chamber integrated in the sensor. Extensive research was carried out with a Fourier transform infrared spectroscopy (FTIR) diagnostic tool to determine optimum conditions for biofunctionalization of the GaAs surface. This activity allowed to advance the fundamental knowledge of self-assembly formation and, consequently, fabrication of high density biointerfaces for efficient immobilization of selected bioreceptors. Among different biochip regeneration methods, it has been demonstrated that liquid UV photooxidation (liquid-UVPO) has a great potential to deliver attractive surfaces for re-usable biochips. Finally, operation of the transducer device was evaluated in air environment and in various liquid media, simulating real conditions for detection.

Identiferoai:union.ndltd.org:usherbrooke.ca/oai:savoirs.usherbrooke.ca:11143/10471
Date January 2016
CreatorsLacour, Vivien
ContributorsDubowski, Jan, Leblois, Thérèse
PublisherUniversité de Sherbrooke
Source SetsUniversité de Sherbrooke
LanguageFrench
Detected LanguageFrench
TypeThèse
Rights© Vivien Lacour, Attribution - Pas d’Utilisation Commerciale - Partage dans les Mêmes Conditions 2.5 Canada, http://creativecommons.org/licenses/by-nc-sa/2.5/ca/

Page generated in 0.0023 seconds