Spelling suggestions: "subject:"arsénico dde gallium"" "subject:"arsénico dee gallium""
1 |
Étude ab initio des mécanismes de diffusion du gallium dans des semiconducteurs cristallinsLevasseur-Smith, Kevin January 2007 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
2 |
Caractérisation des circuits intégrés micro-onde à base d'Arséniure de Gallium par sondage électro-optique utilisant un faisceau laser continuLauffenburger, Stefan January 2003 (has links) (PDF)
Ces dernières années, le nombre de circuits intégrés micro-ondes utilisés dans les systèmes de télécommunications a fortement augmenté suite à l'utilisation de fréquences porteuses de plus en plus élevées. Ce type de circuits intégrés est très fréquemment utilisé dans les équipements pour la téléphonie mobile et pour les communications satellitaires. Le développement, la mise au point et l'optimisation des circuits intégrés nécessitent l'usage d'outils de mesure et de simulation performants. Ces outils permettent par exemple de localiser les points critiques de la conception. Considérant le nombre limité d'entrées et de sorties d'un circuit intégré, l'information sur les signaux électriques à l'intérieur même du circuit intégré est difficilement accessible. Plusieurs techniques de mesure permettant d'accéder à une mesure des champs électromagnétiques à l'intérieur des circuits ont donc été proposées ou sont en développement. Cette thèse est centrée sur le sondage des circuits micro-onde monolithiques intégrés (MMIC) à base d'Arséniure de Gallium. L'idée sous-jacente est d'exploiter les propriétés électro-optiques du substrat semi-conducteur. Un faisceau laser est focalisé sur le circuit à tester. Considérant que l'Arséniure de Gallium est "transparent" pour la longueur d'onde choisie, le faisceau entre dans le composant et il se réfléchit sur la face arrière. Le faisceau réfléchi est modulé par le signal micro-onde en vertu de l'effet Pockels qui impose une modification de l'indice de réfraction optique du matériau sous l'effet d'un champ électrique. Cette modulation, qui peut être mesurée, permet de déduire l'intensité du champ électrique le long du parcours de l'onde optique dans le circuit intégré. L'objectif de cette thèse est la construction d'un prototype à partir de travaux préliminaires réalisés dans le laboratoire du groupe de télécommunications optiques de Télécom Paris. Le but recherché est une conception simple, permettant une utilisation aisée de l'outil à des coûts de matériel réduits. Par conséquent, les composants utilisés sont tous des composants standards du commerce. La réalisation majeure de ce travail correspond à la mise au point d'un instrument entièrement automatisé amenant des mesures très fiables grâce l'utilisation d'équipements nouveaux nettement plus performants. En particulier avec l'utilisation de fibres à maintien de polarisation, toutes les manipulations du faisceau laser en espace libre sont évitées. Les logiciels d'acquisition de donnée ont été intégralement renouvelés et adaptés au produit. Un certain nombre de problèmes théoriques négligés dans les travaux précédents sont de plus réglés comme par exemple celui concernant la validité des résultats de sondage si la direction du champ électrique n'est pas connue exactement. Le problème de l'adéquation de la focalisation du faisceau laser sur le circuit intégré et de la résolution spatiale qui en découle a été analysé. Dans cette thèse, nous décrivons le développement de l'outil et les résultats correspondants. Nous démontrons que les résultats mesurés correspondent à la description théorique. Une sensibilité d'environ 2[mV/
|
3 |
Optimisation d'un microcapteur GaAs à ondes acoustiques et de sa biointerface pour la détection de pathogènes en milieu liquideLacour, Vivien January 2016 (has links)
Cette thèse s’inscrit dans le cadre d’une cotutelle internationale entre l’institut FEMTO-ST à Besançon en France et l’université de Sherbrooke au Canada. Elle porte sur l’élaboration d’un biocapteur, potentiellement à bas coût, pour la détection de pathogènes dans les secteurs de l’agroalimentaire, de l’environnement et de la biosécurité. Le modèle biologique visé est la bactérie Escherichia coli, dont les souches pathogènes sont responsables, chaque année et partout dans le monde, de plusieurs crises sanitaires liées à une mauvaise gestion des produits de consommation ou des installations de conditionnement ou de traitements de ces produits. L’utilisation de biocapteurs pour une détection rapide, sensible et sélective d’organismes pathogènes répond ainsi aux inquiétudes quant aux risques d’infection pour la population. La structure du capteur consiste en une fine membrane en arséniure de gallium (GaAs) vibrant sur des modes de cisaillement d’épaisseur générés par champ électrique latéral via les propriétés piézoélectriques du matériau. Nous montrons dans ce travail que le biocapteur offre également des possibilités de microfabrication, de biofonctionnalisation et de régénération intéressantes pour la conception d’un dispositif à bas coût. Le transducteur a été réalisé via des technologies de microfabrication utilisées en salle blanche avec une mise en parallèle des méthodes d’usinage par voie chimique et par plasma, l’objectif étant d’obtenir des membranes minces, planes et avec un état de surface de haute qualité. Une interface fluidique a été mise au point de façon à approvisionner de manière homogène le capteur en fluide. Par ailleurs, nos études se sont portées sur la fonctionnalisation biochimique de l’interface de bioreconnaissance sur l’arséniure de gallium et sa caractérisation fine par les techniques de spectroscopie infrarouge à transformée de Fourier (FTIR). Les résultats de cette étude ont permis de progresser sur la compréhension fondamentale du phénomène d’auto-assemblage de molécules sur GaAs. Un effort particulier a été mis en œuvre pour développer des biointerfaces de haute densité offrant une immobilisation optimale des immunorécepteurs biologiques. Parmi les différentes méthodes de régénération de la biointerface, le procédé de photo-oxydation UV en milieu liquide a démontré un fort potentiel pour des applications de capteurs réutilisables. Enfin, le transducteur a été caractérisé électriquement sous différents environnements. L’impact sur la réponse du résonateur des paramètres électriques, mécaniques et thermiques de ces milieux a été évalué afin de simuler le comportement du dispositif en condition réelle. / Abstract : This PhD thesis was realized in the context of a cotutelle program between FEMTO-ST institute in France and the University of Sherbrooke in Canada. The thesis addresses the development of a potentially low cost sensor dedicated for detection of pathogens in food industry processing, environment and biosafety sectors. Such a sensor could serve detection of Escherichia coli bacteria whose pathogenic strains are the source of foodborne illnesses encountered worldwide every year. Hence, biosensor devices are needed for a rapid, sensitive and selective detection of pathogens to avert, as soon as possible, any sources of contamination and prevent outbreak risks. The design of the sensor consists of a resonant membrane fabricated in gallium arsenide (GaAs) crystal that operates at shear modes of bulk acoustic waves generated by lateral field excitation. In addition to the attractive piezoelectric properties, as shown in this work, fabrication of a GaAs-based biosensor benefits from a well-developed technology of microfabrication of GaAs, as well as biofunctionalization and the possibility of regeneration that should result in cost savings of used devices. The transducer element was fabricated by using typical clean room microfabrication techniques. Plasma and wet etching were investigated and compared for achieving thin membranes with high quality surface morphology. At the same time, we designed and fabricated fluidic elements that allowed the construction of a flow cell chamber integrated in the sensor. Extensive research was carried out with a Fourier transform infrared spectroscopy (FTIR) diagnostic tool to determine optimum conditions for biofunctionalization of the GaAs surface. This activity allowed to advance the fundamental knowledge of self-assembly formation and, consequently, fabrication of high density biointerfaces for efficient immobilization of selected bioreceptors. Among different biochip regeneration methods, it has been demonstrated that liquid UV photooxidation (liquid-UVPO) has a great potential to deliver attractive surfaces for re-usable biochips. Finally, operation of the transducer device was evaluated in air environment and in various liquid media, simulating real conditions for detection.
|
4 |
Simulation et modèles prédictifs pour les nanodispositifs avancés à canaux à base de matériaux alternatifs / Simulation and predictive models for advanced nanodevices based on alternative channel materialsMugny, Gabriel 21 June 2017 (has links)
Ce travail de thèse a pour but de contribuer au développement d'outils numériques pour la simulation de dispositifs avancés à base de matériaux alternatifs au Si : l’InGaAs et le SiGe. C'est un travail de collaboration entre l'industrie (STMicroelectronics à Crolles) et des instituts de recherche (le CEA à Grenoble et l'IEMN à Lille). La modélisation de dispositifs MOSFET avancés pour des applications de basse puissance est étudiée, grâce à des outils prédictifs, mais efficaces et peu coûteux numériquement, qui peuvent être compatibles avec un environnement industriel. L’étude porte sur différents aspects, tels que i) les propriétés électroniques des matériaux massifs et des nanostructures, avec des outils allant de la méthode des liaisons fortes et des pseudo-potentiels empiriques, à la masse effective ; ii) les propriétés électrostatiques des capacités III-V ; iii) les propriétés de transport (mobilité effective à faible champ et vitesse de saturation) dans les films minces et les nanofils ; iv) la simulation de dispositifs conventionnels planaires FDSOI 14nm en régime linéaire et saturé. Ce travail fait usage d'une large variété d'approches et de modèles différents. Des outils basés sur une approche physique sont développés, permettant d'améliorer la capacité prédictive des modèles TCAD conventionnels, pour la modélisation des dispositifs nanoscopiques à courte longueur de grille et à base de matériaux SiGe ou InGaAs. / This PhD work aims at contributing to the development of numerical tools for advanced device simulation including alternative materials (InGaAs and SiGe). It is a collaboration work, between the industry (STMicroelectronics--Crolles) and research institutes (CEA--Grenoble and IEMN--Lille). The modeling of advanced low-power MOSFET devices is investigated with predictive, but efficient tools, that can be compatibles with an industrial TCAD framework. The study includes different aspects, such as: i) the electronic properties of bulk materials and nanostructures, with tools ranging from atomistic tight-binding and empirical pseudo-potential to effective mass model; ii) the electrostatic properties of III-V Ultra-Thin Body and bulk MOSCAPs; iii) the transport properties (low-field effective mobility and saturation velocity) of thin films and nanowires; iv) the simulation of template 14nm FDSOI devices in linear and saturation regime. This work makes use of a broad variety of approaches, models and techniques. Physical-based tools are developed, allowing to improve the predictive power of TCAD models for advanced devices with short-channel length and alternative channel materials.
|
5 |
Calculs des propriétés électroniques du GaAsN, de nanotubes de carbone et de polymères à faible gap par méthodes ab initioDumont, Guillaume January 2007 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
6 |
Optimisation d'un microcapteur GaAs à ondes acoustiques et de sa biointerface pour la détection de pathogènes en milieu liquide / Optimization of a GaAs bulk acoustic wave microsensor and its biointerface for pathogenic detection in liquidLacour, Vivien 09 December 2016 (has links)
Cette thèse porte sur l'élaboration d'un biocapteur, à bas coût, pour la détection de pathogènes dans les secteurs de l'agroalimentaire et de l'environnement. Le modèle visé est la bactérie Escherichia coli, dont les souches pathogènes sont responsables, chaque année, de plusieurs crises sanitaires. L'utilisation de biocapteurs pour une détection rapide, sensible et sélective de pathogènes répond ainsi aux inquiétudes quant aux risques d'infection pour la population. Le capteur est constitué d'une fine membrane en arsénieure de gallium (GaAs) vibrant sur des modes de cisaillement d'épaisseur générés par champ électrique latéral via ses propriétés piézoélectriques. Nous montrons dans ce travail que la GaAs offre des possibilités de microfabrication, de biofonctionnalisation et de régénération intéressantes pour la conception d'un dispositif à bas coût. Nous avons mis en parallèle deux méthodes d'usinage de membranes minces : par voie chimique et par plasma, avec pour objectif, l'obtention de structures planes et lisse. Nous nous sommes intéressés à la réalisation d'une interface de bioreconnaissance. La caractérisation de celle-ci, par les techniques de spectroscope infrarouge à transformée de Fourier, nous a fait progresser sur a compréhension du phénomène d'auto-assemblage de molécules sur GaAs et nous a permis de développer des interfaces à haute densité. Nous avons étudié sa régénération et la photo-oxydation par UV a démontré un fort potentiel pour des applications de capteurs réutilisables. Enfin à travers des caractérisations électriques du transducteur, nous avons mis en avant l'impact de différents paramètres de l'environnement sur la réponse du dispositif. / This thesis addresses the development of a potentially low cost sensor dedicated for detection of pathogens in food industry processing and environment sectors. Such a sensor could serve detection of Escherichia coli bacteria whose pathogenic strains are the source of foodborne illnesses encountered worldwide every year. Hence, biosensor devices are needed for a rapid, sensitive and selective detection of pathogens to prevent outbreak risks. The design of the sensor consists of a resonant membrane fabricated in gallium arsenide (GaAs) crystal that operates at shear modes of bulk acoustic waves generated by lateral field excitation. In addition to its piezoelectric properties, as shown in this work, fabrication of a GaAs-based biosensor benefits from a well-developed technology of microfabrication and biofunctionalization and the possibility of regeneration that should result in cost savings of used devices. The transducer was fabricated by using typical clean room fabrication techniques. Plasma and wet etching were investigated and compared for achieving thin membranes with high quality surface morphology. Extensive research was carried out by Fourier transform infrared spectroscopy to determine optimum conditions for biofunctionalization of the GaAs surface. This activity allowed to advance the fundamental knowledge of self-assembly formation and, consequently, fabrication of high density biointerfaces. Among different biochip regeneration methods, it has been demonstrated that liquid UV photooxidation has a great potential for re-usable devices. Finally, operation of the transducer device was evaluated in various medium, simulating real conditions for detection.
|
7 |
Microcapteur en arséniure de gallium pour la détection de molécules dans un fluide / Gallium arenide microsensor for the detection of molecules in liquidBienaimé, Alex 11 December 2012 (has links)
La recherche de biomarqueurs pour le dépistage, le diagnostique ou le traitement de maladie requiert le développement de dispositifs hautement sensibles alliant un faible coût d’analyse, un faible encombrement et une réponse rapide. Dans ce cadre, nous développons un biocapteur acoustique utilisant des ondes de volume pour permettre la détection d’analyte particulière dans un milieu biologique complexe. La géométrie retenue est une membrane résonante à excitation et détection piézoélectriques intégrées vibrant sur un mode de cisaillement d’épaisseur généré par un champ latéral. Le transducteur utilise les propriétés particulières de l’arséniure de gallium pour assurer une détection sensible et sélective, aussi bien grâce à ses propriétés piézoélectriques que ses possibilités de microfabrication ou de biofonctionnalisation. Dans un premier temps, nous avons dimensionné le dispositif et modélisé son comportement. Une sensibilité à un ajout de masse a pu être estimée à environ 0.1 ng.Hz-1. Nous avons ensuite envisagé la microfabrication du capteur en utilisant uniquement des techniques de microfabrication à faible coût (gravure humide et photolithogravure). Ceci a permis d’obtenir des membranes épaisses (50 μm) de géométrie et d’état de surface maitrisés. Nous avons ensuite envisagé la réalisation de la biointerface grâce au développement d’une interface chimique spécifique permettant d’immobiliser covalemment une monocouche dense de protéine à la surface du GaAs. Cette monocouche a été caractérisée par une analyse originale couplant la microscopie à force atomique (AFM) et la spectrométrie de masse MALDI-TOF. Enfin, les interfaces fluidiques et électriques ont été mises au point et ont permis de tester le dispositif par une mesure d’impédance. / The biomarkers detection for screening, diagnosis or treatment of disease requires the development of highly sensitive devices combining low cost of analysis, a small size and quick responses. In this context, we develop a biosensor using bulk acoustic wave to allow the detection of specific analyte in a complex biological medium. The geometry used is a piezoelectric resonant membrane using shear mode vibration excited by lateral field. The transducer uses the specific properties of gallium arsenide to provide a highly sensitive and selective detection thanks to its piezoelectric properties and also its microfabrication or biofonctionnalisation facilities. First, we dimensioned the device and modeled it behavior. A sensitivity to adding mass has been estimated at 0.1 ng.Hz-1. Then, we considered the sensor microfabrication using only low cost process (photolithography and wet etching). Through these processes, we obtained well formed thick membranes (50μm) with specific surface properties and microstructuration. Next, we realize the biointerface through the development of a specific chemical interface in order to immobilize a dense protein monolayer covalently attached to the GaAs surface. This monolayer was characterized by an original analysis coupling the atomic force microscopy and the mass spectroscopy MALDI-TOF. Finally, fluid and electrical interfaces have been developed and we tested the device by impedance measurements
|
8 |
Optimisation technologique des transistors bipolaires hyperfréquence de puissance à hétérojonction GaAs/GaAlAsGranier, Hugues 28 September 1995 (has links) (PDF)
Le transistor bipolaire a hétérojonction gaas/gaalas (tbh) présente de fortes potentialités pour l'amplification hyperfréquence de puissance. Ce mémoire constitue une contribution à l'optimisation d'un processus technologique de fabrication de ce transistor pour ce domaine d'application. Dans la première partie, une étude théorique du comportement électrique du T.B.H nous a permis d'établir un modèle électrique en régime statique et dynamique petit signal. A partir de ce modèle, nous avons étudié les phénomènes limitatifs des performances, en insistant sur la focalisation longitudinale du courant le long de l'émetteur et sur les phénomènes thermiques. Dans la seconde partie, nous dressons notre avant-projet de structure de puissance à partir de l'état de l'art publié dans la littérature et des moyens technologiques à notre disposition. Le troisième chapitre décrit de façon détaillée les travaux menés pour la mise en oeuvre et l'optimisation de chacune des étapes technologiques nécessaires a la réalisation de T.B.H de puissance: épitaxie des couches, réalisation des contacts, gravure ionique réactive des mesas, prise des contacts par des ponts a air. Dans la dernière partie, une caractérisation électrique précise tant en régime statique que dynamique, nous a permis d'extraire les paramètres du modèle électrique du T.B.H. Les performances fréquentielles atteintes par un transistor a un doigt d'émetteur de 10x2001#2 sont une fréquence de transition de 20 ghz et une fréquence maximale d'oscillation de 13 ghz. A 2 et 4 ghz, nous avons relevé une puissance dissipée en sortie de 650 mw avec un rendement en puissance ajoutée de 60%.
|
9 |
Contribution à la conception de convertisseurs de fréquence. Intégration en technologie arséniure de gallium et silicium germaniumDubuc, David 19 December 2001 (has links) (PDF)
Ces dernières années ont vu le fort développement des communications spatiales et avec lui le changement des contraintes de conception de ces systèmes. En effet, la multiplicité des applications hyperfréquences ainsi que leur ouverture au domaine grand public ont entraîné l'augmentation des densités d'intégration et des performances des systèmes, mais aussi la nécessité de prendre en considération leur fiabilité et les coûts de production. Ainsi, nos travaux portent sur l'étude et l'intégration de convertisseur de fréquence micro-ondes répondant à ces impératifs. Dans un premier temps, nous abordons les définitions relatives aux mélangeurs ainsi que les principales caractéristiques nécessaires à leurs évaluations. Nous présentons ensuite les différentes topologies de mélangeurs existantes en citant, pour chacune, ses avantages et ses inconvénients. La seconde partie de nos travaux de recherche est dédiée à la définition d'une cellule originale de mélange. Une méthode analytique de conception, basée sur le formalisme des matrices de conversion, nous a permis d'une part de définir des règles génériques de conception de mélangeur et d'autres part d'optimiser notre cellule de mélange suivant des critères fixés. Enfin, une partie importante de ces investigations est dédiée à l'étude de la stabilité non-linéaire des mélangeurs, point sensible de la topologie retenue. La dernière partie de ce mémoire est consacré à l'intégration monolithique et à la caractérisation du mélangeur performant envisagé pour deux technologies concurrentes : l'une basée sur des transistors à effet de champ à haute mobilité électronique sur Arséniure de Gallium et l'autre fondée sur des transistors bipolaires à hétérojonction Silicium/Silicium-Germanium. Pour cette dernière technologie, un effort a été porté sur la conception de circuits passifs fonctionnant aux fréquences millimétriques. La caractérisation des circuits a démontré le bien fondé des études présentées précédemment ainsi que l'aptitude de la technologie Silicium-Germanium pour l'intégration monolithique de systèmes aux fréquences millimétriques.
|
10 |
Conception et optimisation de la tête haute fréquence d'un récepteur hétérodyne à 1.2 THz pour l'instrument JUICE-SWI / Design and optimization at the highest frequency of a heterodyne receiver at 1.2 THz for the JUICE-SWI instrumentMoro Melgar, Diego 06 September 2017 (has links)
La conception, fabrication et caractérisation d’un récepteur hétérodyne à 1.2 THz a été effectuée par le Laboratoire d’Etudes du Rayonnement et de la Matière en Astrophysique et Atmosphères (LERMA) et constitue la base de ce rapport de thèse. Les études, analyse et résultats présentés dans ce manuscrit ont été effectués dans le cadre la mission JUpiter ICe moon Explorer (JUICE). JUICE est la première des grandes missions proposées à l’agenda du programme spatial Cosmic Vision 2015-2025 de l’Agence Spatial Européenne (ESA). La mission satellitaire JUICE est consacrée à l’étude du système Jovien. La charge utile du satellite est composée de 10 instruments à l’état-de-l’art et d'une expérience. Le développement du récepteur hétérodyne à 1.2 THz présenté dans cette thèse est dédié à SWI, acronyme anglais de “Submillimeter Wave Instrument", qui, grâce à une résolution spectrale de 107, étudiera à partir de 2030 la structure, la composition et la dynamique des températures de la stratosphère et de la troposphère de Jupiter ainsi que les exosphères et les surfaces des lunes glacées. La partie haute fréquence du récepteur est complètement basée sur la technologie de diodes Schottky planaires sur membrane d'arséniure de galium (GaAs), appelées “Planar Schottky Barrier Diodes” (PSBDs) dans le manuscrit. La réalisation du canal à 1.2 THz de SWI basé sur la technologie Schottky et entièrement développé par le consortium européen, dont fait parti le LERMA, a été le défi le plus significatif rencontré par ce dernier. L'extrême réduction de la taille des anodes des diodes Schottky nécessaire pour monter aux fréquences du THz a été atteinte en collaboration avec le Laboratoire de Photonique et de Nanostructures (LPN) en utilisant la lithographie électronique pour la fabrication de véritables “Monolithic Microwave Integrated Circuits” (MMIC).Une partie importante du ce rapport de thèse et consacrée à l’étude des phénomènes physiques additionnels qui apparaissent quand les dimensions des diodes sont fortement réduites. En particulier, les modifications du comportement résistif et capacitif des diodes Schottky dues à des phénomènes microscopiques bidimensionnels ont été étudiées au moyen d’un simulateur bidimensionnel Monte Carlo (2D-MC), en collaboration avec l’Université de Salamanca, en Espagne.Comme détaillé dans ce manuscrit, la caractérisation précise du comportement capacitif de la diode Schottky est un point critique pour déterminer la plage de fréquences de leur utilisation pour une application donnée. Toute modélisation imprécise de cette propriété de la diode peut entrainer un décalage significatif de la plage de fréquences d’opération d'un circuit THz.Cependant, la modélisation précise des diodes Schottky à ultra-hautes fréquences, n'est qu'une des étapes requises pour réussir à concevoir correctement un circuit THz. L’analyse précise et méticuleuse de l’interaction entre le comportement électromagnétique du chip MMIC et le comportement physique des diodes Schottky a été le but le plus important poursuit dans ce travail doctoral pour le développement du récepteur à 1.2 THz. Cette tâche a été abordée en utilisant les outils commerciaux “High Frequency Simulation/Structure Software” (Ansys-HFSS) et “Keysight Advance Design System” (Keysight-ADS). La combinaison des simulations électromagnétiques des structures tridimensionnelles du chip MMIC (Ansys-HFSS) et les simulations du comportement électrique non-linéaire de la diode Schottky (Keysight-ADS) est la manière actuelle d'aborder la conception de ce type de circuits THz. Le modèle électrique analytique de la diode requis par l’outil ADS a été défini par l'auteur conformément aux résultats précédemment obtenus avec le simulateur physique Monte Carlo. L’implémentation du modèle étendu de la diode Schottky dans cette méthode pour la conception et l'optimisation de chaque étage du récepteur à 1.2THz, est le sujet développé dans ce rapport de thèse. / The design, fabrication and testing of a frequency heterodyne receiver at 1.2 THz has been developed by Laboratoire d’Etudes du Rayonnement et de la Matière en Astrophysique et Atmosphères (LERMA) and it is the foundation of this dissertation. The studies, analysis and results presented in this manuscript have been carried out within the framework of the JUpiter ICe moon Explorer (JUICE) mission. JUICE is one of the proposed missions in the agenda of the European Space Agency (ESA) Cosmic Vision 2015-2025 program. The objective of the JUICE satellite mission is to study the Jovian system, especially the Jupiter atmosphere properties and the surface characteristics of its icy moons. Scientific equipment consisting of ten state-of-the-art instruments and one experiment comprise the payload of this satellite. The development of a 1.2 THz channel is part of the Submillimeter Wave Instrument (SWI) devoted to recovering the spectroscopy data of the Jupiter atmosphere and icy-moons’ surface composition. The scientific principle for this receiver is all-solid-state semiconductor technology based in GaAs Planar Schottky Barrier Diodes (PSBDs). The achievement of a 1.2 THz channel based in PSBDs totally developed by European partners was the major challenge proposed for SWI, with LERMA committed to this assignment. The required ultra-scaling of the Schottky anode size of PSBDs in the attainment of the THz range has been achieved in collaboration with Laboratoire de Photonique et de Nanostructures (LPN) using e-beam photolithography in the fabrication of Monolithic Microwave Integrated Circuits (MMIC). An important part of this dissertation addresses the appearance of additional physical phenomena when ultrascaling solid-state PSBDs. Particularly, the modification of the electrical resistivity and capacitance of SBDs due to two-dimensional phenomena has been studied by means of a physical microscopic Two-Dimensional Monte Carlo (2D-MC) simulator, in collaboration with the University of Salamanca, Salamanca, Spain. As discussed within this manuscript, the accurate characterization of the diode capacitance is one of the critical points when opening a frequency window in the required frequency range of a THz application. A misunderstanding of this modified capacitance during the design of these devices can lead to a considerable offset in the frequency range of the experimental module. However, the accurate modeling of PSBDs in such high frequency applications is only a part of the expertise required for the successful completion of this challenge. The accurate and meticulous analysis of the interrelationship between the electromagnetic behavior of the MMIC chip and the physical behavior of the integrated PSBDs is the main challenge faced in this dissertation for the development of the 1.2 THz receiver. This task has been addressed using the commercial Ansys High Frequency Simulation/Structure Software (Ansys-HFSS) and the Keysight Advance Design System (Keysight-ADS). The combination of the three-dimensional electromagnetic characterization of the chip structure (obtained with HFSS) with the non-linear electrical circuit simulation (carried out by ADS) of diodes is the current methodology for the design of these modules. The analytical electrical model of PSBDs required by ADS software has been defined by this author in agreement with the results obtained with the 2D-MC simulator. The implementation of this approach in the design and optimization of the different stages of the accomplished 1.2 THz receiver is the main subject of this dissertation. The interaction between the physical model of the PSBDs and the electromagnetic modeling of the structure will be discussed within the different chapters of this dissertation. Finally, the mechanical engineering of these applications must be addressed in this discussion.
|
Page generated in 0.0473 seconds