Return to search

Effet de la température et de l'agitation sur les propriétés rhéologiques des bétons fluides à rhéologie adaptée

Résumé : Le climat local, le transport avec l’agitation entre l’endroit de bétonnage et le site de fabrication du béton influencent fortement les propriétés du béton frais et durci. Selon les particularités du béton autoplaçant (BAP), le maintien de l’homogénéité et l’ouvrabilité du BAP avant la mise en place est très important. Les propriétés des BAP sont généralement plus sensibles à la température et au transport par rapport à celles des bétons conventionnels. Une meilleure compréhension de l’effet de la température et de l’agitation sur la performance des BAP est nécessaire pour prévoir les conséquences du changement du climat (température) et de l’effet du transport (temps et vitesse d’agitation), puis pour donner des précautions à suivre afin de répondre à la demande des BAP pour un bon rapport performance-coût. De manière pragmatique, il s’avère nécessaire d’utiliser la méthode du mortier de béton équivalent (MBE) afin d’analyser rapidement les influences de la température et de l’agitation sur les propriétés rhéologiques, calorimétriques et mécaniques des BAP. Cinq températures (8, 15, 22, 29 et 36°C) et deux vitesses d’agitation (6 et 18 tr/min) ont été étudiées sur les MBE. Ensuite, quelques compositions spécifiques (type d’adjuvant et ajout cimentaire) ont choisies afin de vérifier avec des températures compasse entre 8 à 36°C et les agitations différentes (2 et 6 tr/min) sur les BAP destinés aux travaux de bâtiment (BAP-B) sans agent entraîneur d’air et sur des bétons semi-autoplaçant destinés aux travaux d’infrastructures (BSAP-I) avec agent entraîneur d’air. La fluidité initiale des MBE et BAP a été fixée en faisant varier la demande en SP, la température et l’agitation. Les résultats montrent qu’il y a un effet important de la température et de l’agitation sur l’efficacité des adjuvants, la fluidité, la teneur en air, les propriétés rhéologiques, calorimétriques et mécaniques des MBE et des BAP. Pour prévoir la performance de MBE à différentes températures, une équation mathématique est proposée pour déduire la demande en SP, la demande en AEA, le flux maximal et la résistance en compression à 1 jour en fonction des mêmes propriétés sur MBE à 22°C et de la température. Enfin, une corrélation linéaire a été trouvée entre les MBE et les BAP sur ces mêmes propriétés. / Abstract : The local climate, the transport of agitated concrete after manufacturing but before being cast strongly influence the properties of the fresh and hard concrete. It’s important to keep the stability and workability of the self-consolidating concrete (SCC) because of its special characteristics. Compare to the normal concrete, the properties of SCC are generally more sensitive to the temperature and the transport. Therefore it’s necessary to understand the effects of the temperature and the agitation on the performance of the SCC in order to predict the consequences of climate change (temperature) and transport (time and speed of agitation), and then to give the better precautions with a good performance-cost report. In this study, the concrete mortar equivalent (CEM) method is used to quickly analyze the influences of the temperature and the agitation on the rheological, calorimetric and mechanical properties of the SCCs. Five temperatures (8, 15, 22, 29 and 36°C) and two agitation speed (6 and 18 tr/min) are varied in CEMs. And then, some compositions (type of adjuvant and supplementary cementing material) are chosen to be valued with the temperature (8-36°C) and the agitation (2 and 6 tr/min) in SCCs for the building without air-entraining admixture (AEA) and semi-flowable SCC for infrastructure with AEA. The initial slump flow of CEM and SCC is fixed, but the demand superplasticizer, the temperature and the agitation were varied. The results show that there are the effects of temperature and agitation on the effectiveness of admixture, the slump flow, the air content, the rheological, calorimetric and mechanical properties of CEM and SCC. A mathematical equation is proposed to predict the performance of SCC at different temperatures for the SP and AEA requirement, the maximum of heat flow and the compressive strength at one day by these same properties of SCC at 22°C and by the temperature. Finally, a good linear correlation is found between CEM and SCC for these properties.

Identiferoai:union.ndltd.org:usherbrooke.ca/oai:savoirs.usherbrooke.ca:11143/7567
Date January 2015
CreatorsPan, Jing
ContributorsKhayat, Kamal H., Wirquin, Éric
PublisherUniversité de Sherbrooke
Source SetsUniversité de Sherbrooke
LanguageFrench
Detected LanguageFrench
TypeThèse
Rights© Jing Pan

Page generated in 0.0445 seconds