Return to search

Estabilidade de ondas viajantes para a equação de Schrödinger de tipo cúbico com dois pontos simétricos de interação / Stability of travelling waves for the Schrödingers equation of cubic type with double symmetric delta-interactions wells

Este trabalho consiste, fundamentalmente, em estabelecer de forma analítica a existência e estabilidade orbital de soluções standing-wave de tipo peakon, para a seguinte equação de Schrödinger com dois pontos de interação, determinados por duas deltas de Dirac centradas nos pontos x = ±c (NLS-), i t u(x, t) + x 2 u(x, t) + Z[ c (x) + c (x)]u(x, t) = |u(x, t)| 2 u(x, t), (1) onde u : R×R C, Z R e c é a distribuição delta de Dirac agindo em x = c > 0, a saber, para H 1 (R), h c , i = (c). Para as soluções standing waves (ondas estacionárias) associadas à equação (1), i.e., u(x, t) = e it (x), mostramos que é possível determinar o perfil (x) da seguinte maneira: entre os pontos c e c o perfil admite, pelos menos, duas funções suaves e positivas dadas pelas funções elípticas de Jacobi conhecidas como dnoidal e cnoidal. Já para c < |x|, o perfil coincide com uma determinada translação do soliton-perfil secante hiperbólica\" (é bem conhecido na literatura que o perfil secante hiperbólica está associado à equação (1), no caso em que Z = 0). De fato, mostramos que para o caso Z > 0 é possível ajustar, entre os pontos de interação c e c, um perfil periódico de tipo dnoidal ; e para o caso Z < 0 mostramos como é construído entre os pontos de interação um perfil de tipo cnoidal. Uma questão crucial que surge no problema da existência de um perfil conveniente é aquela relacionada com a localização do ponto de interação c > 0. A maneira como respondimos a esta questão foi, de fato, determinante para a obtenção do nosso resultado de estabilidade/instabilidade. Isto se deve a que permitiu o uso de técnicas conhecidas na literatura no desenvolvimento do trabalho. En concreto, a escolha da localização do ponto de interação c, faz com que a segunda derivada do perfil , seja contínua neste ponto. Baseados em argumentos da teoria de Floquet, teoria de representação de formas bi- lineares, teoria de extensão de operadores simétricos e a teoria de perturbação analítica para operadores lineares, bem como nos resultados desenvolvidos por Weinstein e Grilla- kis&Shatah&Strauss, mostramos resultados sobre a estabilidade/instabilidade orbital des- sas ondas. Mais precisamente, mostramos que aquelas com um perfil dnoidal são instáveis e aquelas um perfil cnoidal são estáveis. Além disto, estudamos o problema de Cauchy para (1) no espaço de energia H 1 (R). Para tanto, usaremos informações do espectro do operador com interações pontuais d 2 ±c,Z = 2 Z[ c + c ], dx o qual representa formalmente uma das famílias de extensões auto-adjuntas do operador iii simétrico ( d 2 = dx 2 D() = {f H 1 (R) H 2 (R {±c}) : f (±c) = 0}. / This work consists mainly in establishing an analytical way the existence and orbital stability for the standing-wave solutions of \"peakon\"type of the following Schrödinger equation with two points of interaction, determined by two Diracs delta centered at the points x = ±c (NLS-), i t u(x, t) + x 2 u(x, t) + Z[ c + c ]u(x, t) = |u(x, t)| 2 u(x, t), (2) where u : R × R C, Z R and c is the Diracs delta distribution in x = c > 0, namely, for H 1 (R), h c , i = (c). For the standing-wave solutions associated to equation (2), i.e., u(x, t) = e it (x), we show that is possible to determine the profile (x) as follows: between the points c and c, the profile admits at least two smooth positive functions given by the Jacobi elliptic functions of dnoidal and cnoidal type. For c < |x|, the profile coincides with an specific shift of the soliton-profile hiperbolic secant profile (it is well-known in the literature that the hiperbolic secant profile is associated to the equation (2) for the case Z = 0). Indeed, we show for the case Z > 0 that it is possible to determine a periodic dnoidal profile between the points c and c. On the other hand, for the case Z < 0 we establish a periodic cnoidal profile between the points c and c. A crucial question arises in the problem of the existence of a suitable profile is the one related to the location of the interaction point c > 0. This question was crucial to the achievement of our stability/instability result. In fact, the choice of location of the interaction point c implies that the second derivative of the porfile is continuous at c. The stability/instability theory of these specific profiles are based on the analityc per- turbation theory and the framework developed by Weinstein and Grillakis&Shatah&Strauss. More precisely, we show that those ones with a dnoidal profile are unstable and those ones with a cnoidal profile are stable. In addition, we study the Cauchy problem in the energy space H 1 (R) for equation (2). For this purpose, it is necessary to study the spectrum of the operator d 2 ±c,Z = 2 Z[ c + c ]. dx This operator can be understood as the family of self-adjoint extension of the symmetric operator ( d 2 = dx 2 D() = {f H 1 (R) H 2 (R {±c}) : f (±c) = 0}.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-03062019-170403
Date04 December 2015
CreatorsCeron, Luis Andres Rosso
ContributorsPava, Jaime Angulo
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguageEnglish
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0028 seconds