• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dérivation des équations de Schrödinger non linéaires par une méthode des caractéristiques en dimension infinie / Derivation of the non linear Schrödinger equations by the characteristics method in a infinite dimensional space

Liard, Quentin 08 December 2015 (has links)
Dans cette thèse, nous aborderons l'approximation de champ moyen pour des particules bosoniques. Pour un certain nombre d'états quantiques, la dérivation de la limite de champ moyen est connue, et il semble naturel d'étendre ces travaux à un cadre général d'états quantiques quelconques. L'approximation de champ moyen consiste à remplacer le problème à N corps quantique par un problème non linéaire, dit de Hartree, quand le nombre de particules est grand. Nous prouverons un résultat général pour un système de particules, confinées ou non, interagissant au travers d'un potentiel singulier. La méthode utilisée repose sur les mesures de Wigner. Notre contribution consiste en l'extension de la méthode des caractéristiques au cadre de champ de vitesse singulier associé à l'équation de Hartree. Cela complète les travaux d'Ammari et Nier et permet de prouver des résultats pour des potentiels critiques pour les équations de Hartree. En particulier, on s'intéressera à un système de bosons interagissant au travers d'un potentiel à plusieurs corps et nous démontrerons l'approximation de champ moyen sous une hypothèse de compacité forte sur ce dernier. Les résultats s’appuient en grande partie sur la flexibilité des mesures de Wigner, ce qui permet également de proposer une preuve alternative à l'approximation de champ moyen dans un cadre variationnel. / In this thesis, we justify the mean field approximation in a general framework for bosonic systems. The derivation of mean field dynamics is known for some specific quantum states. Therefore it is natural to expect the extension of these results for a general family of normal states. The mean field approximation for bosons consists in replacing the many-body quantum problem by a non linear one, so-called Hartree problem, when the number of particles tends to infinity. We establish a general result for bosons confined or not, interacting through a singular potential. The method used is based on Wigner measures. Our contribution consists in extending the characteristics method when the velocity field associated to the Hartree equation is subcritical or critical. It complements the work of Ammari and Nier and provides a result for critical potential for the Hartree equation. We also focus on bosonic systems interacting through a multi-body potential and we prove the mean field approximation under a strong assumption on this potential. All these results essentially rely on the flexibility of Wigner measures and we can give an alternative proof of the variational mean field approximation.
2

Équations de Schrödinger à données aléatoires : construction de solutions globales pour des équations sur-critiques / Random data for Schrödinger equations : construction of global solutions for supercritical equations

Poiret, Aurélien 19 December 2012 (has links)
Dans cette thèse, on construit un grand nombre de solutions globales pour de nombreuses équations de Schrödinger sur-critiques. Le principe consiste à rendre la donnée initiale aléatoire, selon les mêmes méthodes que Nicolas Burq, Nikolay Tzvetkov et Laurent Thomann afin de gagner de la dérivabilité.On considère d'abord l'équation de Schrödinger cubique en dimension 3. En partant de variables aléatoires gaussiennes et de la base de L^2(R^3) formée des fonctions d'Hermite tensorielles, on construit des ensembles de solutions globales pour des données initiales qui sont moralement dans L^2(R^3). Les points clefs de la démonstration sont l'existence d'une estimée bilinéaire de type Bourgain pour l'oscillateur harmonique et la transformation de lentille qui permet de se ramener à prouver l'existence locale de solutions à l'équation de Schrödinger avec potentiel harmonique.On étudie ensuite l'effet régularisant pour prouver un théorème analogue où le gain de dérivée vaut 1/2-2/(p-1) où p correspond à la non linéarité de l'équation. Le gain est donc plus faible que précédemment mais la base de fonctions propres quelconques. De plus, la méthode s'appuyant sur des estimées linéaires, on établit le résultat pour des variables aléatoires dont la queue de distribution est à décroissance exponentielle.Enfin, on démontre des estimées multilinéaires en dimension 2 pour une base de fonctions propres quelconques ainsi que des inégalités de types chaos de Wiener pour une classe générale de variables aléatoires. Cela nous permet d'établir le théorème pour l'équation de Schrödinger quintique, avec un gain de dérivée égal à 1/3, dans le même cadre que la partie précédente. / In this thesis, we build a large number of global solutions for many supercritical Schrödinger equations. The method is to make the random initial data, using the same methods that Nicolas Burq, Nikolay Tzvetkov and Laurent Thomann in order to obtain differentiability. First, we consider the cubic Schrödinger equation in three dimensional. Using Gaussian random variables and the basis of L^2(R^3) consists of tensorial Hermite functions, we construct sets of solutions for initial data that are morally in L^2(R^3). The main ingredients of the proof are the existence of Bourgain type bilinear estimates for the harmonic oscillator and the lens transform which can be reduced to prove a local existence of solutions for the Schrödinger equation with harmonic potential. Next, we study the smoothing effect to prove an analogous theorem which the gain of differentiability is equalto 1/2-2/(p-1) which p is the nonlinearity of the equation. This gain is lower than previously but the basis of eigenfunctions are general. As the method uses only linear estimates, we establish the result for a general class of random variables.Finally, we prove multilinear estimates in two dimensional for a basis of ordinaries eigenfunctions and Wienerchaos type inequalities for classical random variables. This allows us to establish the theorem for the quinticSchrödinger equation, with a gain of differentiability equals to 1/3, in the same context as the previous chapter.
3

Estabilidade de ondas viajantes para a equação de Schrödinger de tipo cúbico com dois pontos simétricos de interação / Stability of travelling waves for the Schrödingers equation of cubic type with double symmetric delta-interactions wells

Ceron, Luis Andres Rosso 04 December 2015 (has links)
Este trabalho consiste, fundamentalmente, em estabelecer de forma analítica a existência e estabilidade orbital de soluções standing-wave de tipo peakon, para a seguinte equação de Schrödinger com dois pontos de interação, determinados por duas deltas de Dirac centradas nos pontos x = ±c (NLS-), i t u(x, t) + x 2 u(x, t) + Z[ c (x) + c (x)]u(x, t) = |u(x, t)| 2 u(x, t), (1) onde u : R×R C, Z R e c é a distribuição delta de Dirac agindo em x = c > 0, a saber, para H 1 (R), h c , i = (c). Para as soluções standing waves (ondas estacionárias) associadas à equação (1), i.e., u(x, t) = e it (x), mostramos que é possível determinar o perfil (x) da seguinte maneira: entre os pontos c e c o perfil admite, pelos menos, duas funções suaves e positivas dadas pelas funções elípticas de Jacobi conhecidas como dnoidal e cnoidal. Já para c < |x|, o perfil coincide com uma determinada translação do soliton-perfil secante hiperbólica\" (é bem conhecido na literatura que o perfil secante hiperbólica está associado à equação (1), no caso em que Z = 0). De fato, mostramos que para o caso Z > 0 é possível ajustar, entre os pontos de interação c e c, um perfil periódico de tipo dnoidal ; e para o caso Z < 0 mostramos como é construído entre os pontos de interação um perfil de tipo cnoidal. Uma questão crucial que surge no problema da existência de um perfil conveniente é aquela relacionada com a localização do ponto de interação c > 0. A maneira como respondimos a esta questão foi, de fato, determinante para a obtenção do nosso resultado de estabilidade/instabilidade. Isto se deve a que permitiu o uso de técnicas conhecidas na literatura no desenvolvimento do trabalho. En concreto, a escolha da localização do ponto de interação c, faz com que a segunda derivada do perfil , seja contínua neste ponto. Baseados em argumentos da teoria de Floquet, teoria de representação de formas bi- lineares, teoria de extensão de operadores simétricos e a teoria de perturbação analítica para operadores lineares, bem como nos resultados desenvolvidos por Weinstein e Grilla- kis&Shatah&Strauss, mostramos resultados sobre a estabilidade/instabilidade orbital des- sas ondas. Mais precisamente, mostramos que aquelas com um perfil dnoidal são instáveis e aquelas um perfil cnoidal são estáveis. Além disto, estudamos o problema de Cauchy para (1) no espaço de energia H 1 (R). Para tanto, usaremos informações do espectro do operador com interações pontuais d 2 ±c,Z = 2 Z[ c + c ], dx o qual representa formalmente uma das famílias de extensões auto-adjuntas do operador iii simétrico ( d 2 = dx 2 D() = {f H 1 (R) H 2 (R {±c}) : f (±c) = 0}. / This work consists mainly in establishing an analytical way the existence and orbital stability for the standing-wave solutions of \"peakon\"type of the following Schrödinger equation with two points of interaction, determined by two Diracs delta centered at the points x = ±c (NLS-), i t u(x, t) + x 2 u(x, t) + Z[ c + c ]u(x, t) = |u(x, t)| 2 u(x, t), (2) where u : R × R C, Z R and c is the Diracs delta distribution in x = c > 0, namely, for H 1 (R), h c , i = (c). For the standing-wave solutions associated to equation (2), i.e., u(x, t) = e it (x), we show that is possible to determine the profile (x) as follows: between the points c and c, the profile admits at least two smooth positive functions given by the Jacobi elliptic functions of dnoidal and cnoidal type. For c < |x|, the profile coincides with an specific shift of the soliton-profile hiperbolic secant profile (it is well-known in the literature that the hiperbolic secant profile is associated to the equation (2) for the case Z = 0). Indeed, we show for the case Z > 0 that it is possible to determine a periodic dnoidal profile between the points c and c. On the other hand, for the case Z < 0 we establish a periodic cnoidal profile between the points c and c. A crucial question arises in the problem of the existence of a suitable profile is the one related to the location of the interaction point c > 0. This question was crucial to the achievement of our stability/instability result. In fact, the choice of location of the interaction point c implies that the second derivative of the porfile is continuous at c. The stability/instability theory of these specific profiles are based on the analityc per- turbation theory and the framework developed by Weinstein and Grillakis&Shatah&Strauss. More precisely, we show that those ones with a dnoidal profile are unstable and those ones with a cnoidal profile are stable. In addition, we study the Cauchy problem in the energy space H 1 (R) for equation (2). For this purpose, it is necessary to study the spectrum of the operator d 2 ±c,Z = 2 Z[ c + c ]. dx This operator can be understood as the family of self-adjoint extension of the symmetric operator ( d 2 = dx 2 D() = {f H 1 (R) H 2 (R {±c}) : f (±c) = 0}.
4

Existence non existence et multiplicité d'ondes stationnaires normalisées pour quelques équations non linéaires elliptiques / Existence, non existence et multiplicité d'ondes stationnaires normalisées pour quelques équations non linéaires elliptiquesExistence, non-existence and multiplicity of normalized standing waves for some nonlinear elliptic equations

Luo, Tingjian 18 December 2013 (has links)
Dans cette thèse, nous étudions l’existence, non existence et multiplicité des ondes stationnairesavec les normes prescrites pour deux types d’équations aux dérivées partiellesnon linéaires elliptiques découlant de différents modèles physiques. La stabilité orbitale desondes stationnaires est également étudiée dans certains cas. Les principales méthodes denos preuves sont des arguments variationnels. Les solutions sont obtenues comme pointscritiques de fonctionnelle associée sur une contrainte.La thèse se compose de sept chapitres. Le Chapitre 1 est l’introduction de la thèse. Dansles Chapitres 2 à 4, nous étudions une classe d’équations de Schrödinger-Poisson-Slaternon linéaires. Nous établissons dans le Chapitre 2 des résultats optimaux non existencede solutions d’énergie minimale ayant une norme L2 prescrite. Dans le Chapitre 3, nousmontrons un résultat d’existence de solutions L2 normalisées, dans une cas où la fonctionnelleassociée n’est pas bornée inférieurement sur la contrainte. Nos solutions sonttrouvées comme des points de selle de la fonctionnelle, mais ils correspondent à des solutionsd’énergée minimale. Nous montrons également que les ondes stationnaires associéessont orbitalement instables. Ici, puisque nos points critiques présumés ne sont pas desminimiseurs globaux, il n’est pas possible d’utiliser de façon systématique les méthodesde compacité par concentration développées par P. L. Lions. Ensuite, dans le Chapitre4, nous montrons que sous les hypothèses du Chapitre 3, il existe une infinité de solutionsayant une norme L2 prescrite. Dans les deux chapitres suivants, nous étudions uneclasse d’équations de Schrödinger quasi-linéaires. Des résultats optimaux non existence desolutions d’énergie minimale sont donnés dans le Chapitre 5. Dans le Chapitre 6, nousprouvons l’existence de deux solutions positives ayant une norme donnée. L’une d’elles,relativement à la contrainte L2, est de type point selle. L’autre est un minimum, soit localou global. Le fait que la fonctionnelle naturelle associée à cette équation n’est pas biendéfinie nécessite l’utilisation d’une méthode de perturbation pour obtenir ces deux pointscritiques. Enfin, au Chapitre 7, nous mentionnons quelques questions que cette thèse asoulevées. / In this thesis, we study the existence, non-existence and multiplicity of standing waves withprescribed norms for two types of nonlinear elliptic partial differential equations arisingfrom various physical models. The orbital stability of the standing waves is also discussedin some cases. The main ingredients of our proofs are variational arguments. The solutionsare found as critical points of an associated functional on a constraint.The thesis consists of seven chapters. Chapter 1 is the Introduction of the thesis.In Chapters 2 to 4, we study a class of nonlinear Schrödinger-Poisson-Slater equations.We establish in Chapter 2 sharp non-existence results of least energy solutions having aprescribed L2-norm. In Chapter 3 we prove an existence result for L2-normalized solutions,in a situation where the associated functional is unbounded from below on the constraint.Our solutions are found as saddle points of the functional but they correspond to leastenergy solutions. We also prove that the associated standing waves are orbitally unstable.Here a key feature is that, since our suspected critical points are not global minimizers, itis not possible to use in a standard way the machinery of compactness by concentrationdeveloped by P. L. Lions. Then, in Chapter 4, we prove that under the assumptions ofChapter 3, there do exist infinitely many solutions having a prescribed L2-norm. In thefollowing two chapters, we investigate a class of quasi-linear Schrödinger equations. Sharpnon-existence results of least energy solutions are given in Chapter 5. In Chapter 6 weprove the existence of two positive solutions having a given norm. One of them, is relativeto the L2-norm constraint, of saddle point type. The other one is a minimum, either localor global. The fact that the natural functional associated with this equation is not welldefined requires the use of a perturbation approach to obtain these two critical points.Finally, in Chapter 7 we mention some questions that this thesis has raised.

Page generated in 0.1448 seconds