Redes neurais auto-organizáveis na caracterização de lesões intersticiais de pulmão em radiografia de tórax / Self-organizing neural networks in the characterization of interstitial lung diseases in chest radiographs.

O desenvolvimento tecnológico proporciona uma melhoria na qualidade de vida devido à facilidade, rapidez e flexibilidade no acesso à informação. Na área biomédica, a tecnologia é reconhecidamente uma importante aliada, permitindo o rápido desenvolvimento de métodos e técnicas que auxiliam o profissional na atenção à saúde. Recentes avanços na análise computadorizada de imagens médicas contribuem para o diagnóstico precoce de uma série de doenças. Nesse trabalho é apresentada uma metodologia para o desenvolvimento de um sistema computacional para caracterização de padrões em imagens pulmonares, baseado em técnicas de redes neurais artificiais. No estudo, buscou-se verificar a utilização de redes neurais auto-organizáveis como ferramenta de extração de atributos e redução de dimensionalidade de imagens radiográficas de tórax, objetivando a caracterização de lesões intersticiais de pulmão. Para a redução de dimensionalidade e extração de atributos, implementou-se um algoritmo baseado nos mapas auto-organizáveis (SOM), com algumas variações, obtendo-se uma redução dos cerca de 3 milhões de pixels que compõe uma imagem, para 240 elementos. Para a classificação dos padrões, utilizou-se uma rede Perceptron multi-camadas (MLP), validada com a metodologia leave-one-out. Com uma base contendo 79 exemplos de padrão linear, 37 exemplos de padrão nodular, 30 exemplos de padrão misto, e 72 exemplos de padrão normal, o classificador obteve a média de 89,5% de acerto, sendo 100% de classificação correta para o padrão linear, 67,5% para o padrão nodular, 63,3% para o padrão misto, e 100% para o padrão normal. Os resultados obtidos comprovam a validade da metodologia. / The technological development provides an improvement in the quality of life due to easiness, speed and flexibility in the access to the information. In the biomedical area, the technology is admitted as an important allied, allowing the fast development of methods and techniques that assist the professional in the health care. Recent advances in the computerized analysis of medical images contribute for the precocious diagnosis of a series of diseases. In this work a methodology for the development of a computational system for characterization of patterns in pulmonary images, based in techniques of artificial neural networks is presented. In the study, has searched for the verification the use of self-organizing neural networks as a feature extraction and dimensionality reduction tool of chest radiographs, willing to characterize interstitial lung disease. For the dimensionality reduction and feature extraction, an algorithm based on Self-Organizing Maps (SOM) was implemented, with some variations, getting a reduction of about 3 million pixels that it composes an image, for 240 elements. For the pattern classification, a Multilayer Perceptron (MLP) was used, validated with the leave-one-out methodology. With a database containing 79 samples of linear pattern, 37 samples of nodular pattern, 30 samples of mixed pattern, and 72 samples of normal pattern, the classifier provided an average result of 89.5% of right classification, with 100% of right classification for linear pattern, 67.5% for nodular pattern, 63.3% for mixed pattern, and 100% for normal pattern. The results prove the validity of the methodology.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-05092007-145334
Date01 June 2007
CreatorsAmbrosio, Paulo Eduardo
ContributorsTrad, Clovis Simao
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0029 seconds