Teoria isomorfa dos espaços de Banach C0(K,X) / Isomorphic theory of the Banach spaces C0(K,X)

Para um espaço localmente compacto de Hausdorff K e um espaço de Banach X, denotamos por C0(K,X) o espaço de todas as funções a valores em X contínuas sobre K que se anulam no infinito, munido da norma do supremo. No espírito do clássico teorema de Banach-Stone 1937, estabelecemos que se C0(K1,X) é isomorfo a C0(K2,X), onde X é um espaço de Banach de cotipo finito e tal que X é separável ou X* tem a propriedade de Radon-Nikodým, então ou K1 e K2 são ambos finitos ou K1 e K2 tem a mesma cardinalidade. Trata-se de uma extensão vetorial de um resultado de Cengiz 1978, o caso escalar X = R ou X = C. Demonstramos também que se K1 e K2 são intervalos compactos de ordinais e X é um espaço de Banach de cotipo finito, então a existência de um isomorfismo T de C(K1,X) em C(K2,X) com ||T||||T-1|| < 3 implica que uma certa soma topológica finita de K1 é homeomorfa a alguma soma topológica finita de K2. Mais ainda, se Xn não contém subespaço isomorfo a Xn+1 para todo n &isin; N, então K1 é homeomorfo a K2. Em outras palavras, obtemos um teorema tipo Banach-Stone vetorial que é uma extensão de um teorema de Gordon de 1970 e ao mesmo tempo uma extensão de um teorema de Behrends e Cambern de 1988. Mostramos que se existe um isomorfismo T de C(K1) em um subespaço de C(K2,X) com ||T||||T-1|| < 3, então a cardinalidade do &alpha;-ésimo derivado de K2 ou é finita ou é maior do que a cardinalidade do &alpha;-ésimo derivado de K1, para todo ordinal &alpha;. Em seguida, seja n um inteiro positivo, &Gamma; um conjunto infinito munido da topologia discreta e X um espaço de Banach de cotipo finito. Estabelecemos que se o n-ésimo derivado de K for não vazio, então a distância de Banach-Mazur entre C0(K,X) e C0(&Gamma;,X) é maior ou igual a 2n + 1. Também demonstramos que para quaisquer inteiros positivos n e k, a distância de Banach-Mazur entre C([1,&omega;nk],X) e C0(N,X) é exatamente 2n+1. Estes resultados fornecem extensões vetoriais para alguns teoremas de Cambern de 1970. Para um ordinal enumerável &alpha;, denotando por C(&alpha;) o espaço de Banach das funções contínuas no intervalo de ordinal [1, &alpha;], obtemos cotas superiores H(n, k) e cotas inferiores G(n, k) para as distâncias de Banach-Mazur entre os espaços C(&omega;) e C(&omega;nk), 1 < n, k < &omega;, verificando H(n, k) - G(n, k) < 2. Estas estimativas fornecem uma resposta para uma questão de Bessaga e Peczynski de 1960 sobre as distâncias de Banach-Mazur entre C(&omega;) e cada um dos espaços C(&alpha;), &omega;<&alpha;<&omega;&omega;. / For a locally compact Hausdorff space K and a Banach space X, we denote by C0(K,X) the space of X-valued continuous functions on K which vanish at infinity, endowed with the supremum norm. In the spirit of the classical 1937 Banach-Stone theorem, we prove that if C0(K1,X) is isomorphic to C0(K2,X), where X is a Banach space having finite cotype and such that X is separable or X* has the Radon-Nikodým property, then either K1 and K2 are finite or K1 and K2 have the same cardinality. It is a vector-valued extension of a 1978 Cengiz result, the scalar case X = R or X = C. We also prove that if K1 and K2 are compact ordinal spaces and X is Banach space having finite cotype, then the existence of an isomorphism T from C(K1,X) onto C(K2,X) with ||T||||T-1|| < 3 implies that some finite topological sum of K1 is homeomorphic to some finite topological sum of K2. Moreover, if Xn contains no subspace isomorphic to Xn+1 for every n &isin; N, then K1 is homeomorphic to K2. In other words, we obtain a vector-valued Banach-Stone theorem which is an extension of a 1970 Gordon theorem and at same time an improvement of a 1988 Behrends and Cambern theorem. We show that if there is an embedding T of a C(K1) into C(K2,X) with ||T||||T-1|| < 3, then the cardinality of the &alpha;-th derivative of K2 is either finite or greater than the cardinality of the &alpha;-th derivative of K1, for every ordinal &alpha;. Next, let n be a positive integer, &Gamma; an infinite set with the discrete topology and X is a Banach space having finite cotype. We prove that if the n-th derivative of K is not empty, then the Banach Mazur distance between C0(K,X) and C0(&Gamma;,X) is greater than or equal to 2n + 1. Thus, we also show that for every positive integers n and k, the Banach Mazur distance between C([1,&omega;nk],X) and C0(N,X) is exactly 2n+1. These results provide vector-valued versions of some 1970 Cambern theorems. For a countable ordinal &alpha;, writing C(&alpha;) for the Banach space of continuous functions on the interval of ordinal [1, &alpha;], we give lower bounds H(n, k) and upper bounds G(n, k) on the Banach- Mazur distances between C(&omega;) and C(&omega;nk), 1 < n, k < &omega;, such that H(n, k) - G(n, k) < 2. These estimates provide an answer to a 1960 Bessaga and Peczynski question on the Banach-Mazur distances between C(&omega;) and each of the C(&alpha;) spaces, &omega;<&alpha;<&omega;&omega;.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-17072013-113811
Date12 November 2012
CreatorsBatista, Leandro Candido
ContributorsGalego, Eloi Medina
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0022 seconds