Return to search

Equações Diferenciais não Lineares com Três Retardos: Estudo Detalhado das Soluções / Nonlinear differential equations with three delays: detailed study of the solutions.

In this thesis we study the behavior of a simple control system based on a delay differential equation with multiple loops of negative feedback. Numerical solutions of the delay differential equation with N delays d/dt x(t) = -x(t) + 1/N POT.N IND.i=1 / POT.n IND.i + x (t- IND.i) POT.n have been investigated as function of its parameters: n, i and i. A simple numerical method for determine the stability regions of the equilibrium points in the parameter space (i, n) is presented. The existence of a doubling period route to chaos in the equation, for N = 3, is characterized by the construction of bifurcation diagram with parameter n. A numerical method that uses the analysis of Poincaré sections of the reconstructed attractor to find aperiodic solutions in the parameter space of the equation is also presented. We apply this method for N = 2 and get evidences for the existence of chaotic solutions as result of a period doubling route to chaos (chaotic solutions for N = 2 in that equation had never been observed). Finally, we study the solutions of a piecewise constant equation that corresponds to the limit case n . / In this thesis we study the behavior of a simple control system based on a delay differential equation with multiple loops of negative feedback. Numerical solutions of the delay differential equation with N delays d/dt x(t) = -x(t) + 1/N POT.N IND.i=1 / POT.n IND.i + x (t- IND.i) POT.n have been investigated as function of its parameters: n, i and i. A simple numerical method for determine the stability regions of the equilibrium points in the parameter space (i, n) is presented. The existence of a doubling period route to chaos in the equation, for N = 3, is characterized by the construction of bifurcation diagram with parameter n. A numerical method that uses the analysis of Poincaré sections of the reconstructed attractor to find aperiodic solutions in the parameter space of the equation is also presented. We apply this method for N = 2 and get evidences for the existence of chaotic solutions as result of a period doubling route to chaos (chaotic solutions for N = 2 in that equation had never been observed). Finally, we study the solutions of a piecewise constant equation that corresponds to the limit case n .

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-28112013-102436
Date25 May 2000
CreatorsFigueiredo, Júlio César Bastos de
ContributorsMalta, Coraci Pereira
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguageEnglish
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0019 seconds