Return to search

Modeling and Simulation of a Hybrid Electric Vessel

A proposed hybrid electric marine vehicle was modeled in MATLAB Simulink and SimPowerSystems. Models for each of the individual propulsion components were developed and incorporated into a complete hybrid electric propulsion model. A vessel resistance model was created to support vessel performance and energy requirement evaluation. The model incorporates data based on the ship principal parameters and hull form. A rule-based supervisory controller for the proposed vessel was constructed. It is an amalgamation of control strategies of three vehicle architectures: electric vehicle, fuel cell electric vehicle, and hybrid electric vehicle (HEV). The complete model of the hybrid electric propulsion, control, and resistance subsystems was simulated on a dSPACE hardware-in-the-loop platform. For each simulation, the energy storage system (ESS) state of charge, station keeping/cruising mode, HEV assist, Beaufort number, current speed, true wind angle, and hotel load were specified. From the simulations, it was demonstrated that using a 30% ESS assisted HEV mode results in reduced emissions and fuel consumption as compared to a conventional vessel powertrain mode, supporting the case for plug-in hybrid electric vessels. A larger capacity ESS has the potential to reduce emissions and fuel consumption further, depending on ship usage. The basic rule-based supervisory controller proved functional for facilitating adequate power flows; however, further development is needed to improve efficiency and the mode selection process. / Graduate / 0548

Identiferoai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/5132
Date03 January 2014
CreatorsJaster, Tiffany
ContributorsDong, Zuomin, Rowe, Andrew Michael
Source SetsUniversity of Victoria
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
RightsAvailable to the World Wide Web

Page generated in 0.0018 seconds