• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1156
  • 239
  • 189
  • 178
  • 120
  • 37
  • 32
  • 32
  • 30
  • 17
  • 13
  • 12
  • 7
  • 6
  • 6
  • Tagged with
  • 2478
  • 596
  • 376
  • 346
  • 306
  • 211
  • 210
  • 205
  • 196
  • 185
  • 179
  • 172
  • 172
  • 166
  • 150
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Shape functions in calculations of differential scattering cross-sections

Johansson, Anders January 2010 (has links)
Two new methods for calculating the double differential scattering cross-section (DDSCS) in electron energy loss spectroscopy (EELS) have been developed, allowing for simulations of sample geometries which have been unavailable to earlier methods of calculation. The new methods concerns the calculations of the thickness function of the DDSCS. Earlier programs have used an analytic approximation of a sum over the lattice vectors of the sample that is valid for samples with parallel entrance and exit surfaces.The first of the new methods carries out the sum explicitly, first identifying the unit cells illuminated by the electron beam, which are the ones needed to be summed over. The second uses an approach with Fourier transforms, yielding a final expression containing the shape amplitude, the Fourier transform of the shape function defining the shape of the electron beam inside the sample. Approximating the shape with a polyhedron, one can quickly calculate the shape amplitude as sums over it’s faces and edges. The first method gives fast calculations for small samples or beams, when the number of illuminated unit cells is small. The second is more efficient in the case of large beams or samples, as the number of faces and edges of the polyhedron used in the calculation of the shape amplitude does not need to be increased much for large beams. A simulation of the DDSCS for magnetite has been performed, yielding diffraction patterns for the L3 edge of the three Fe atoms in its basis.
252

Shape Descriptors Based On Intersection Consistency And Global Binary Patterns

Sivri, Erdal 01 September 2012 (has links) (PDF)
Shape description is an important problem in computer vision because most vision tasks that require comparing or matching visual entities rely on shape descriptors. In this thesis, two novel shape descriptors are proposed, namely Intersection Consistency Histogram (ICH) and Global Binary Patterns (GBP). The former is based on a local regularity measure called Intersection Consistency (IC), which determines whether edge pixels in an image patch point towards the center or not. The second method, called Global Binary Patterns, represents the shape in binary along horizontal, vertical, diagonal or principal directions. These two methods are extensively analyzed on several databases, and retrieval and running time performances are presented. Moreover, these methods are compared with methods such as Shape Context, Histograms of Oriented Gradients, Local Binary Patterns and Fourier Descriptors. We report that our descriptors perform comparable to these methods.
253

Assessment of Laser Solid Freeform Fabrication for Realization of Shape Memory Alloy Components with Complex Geometry

Alhammad, Munther 23 January 2008 (has links)
The purpose of the present study was to assess the feasibility of a laser layer manufacturing technique for realization of shape memory alloy (SMA) components with complex geometry. Pre-placed laser solid freeform fabrication (LSFF) was utilized to produce straight and curvaceous SMA parts from a mixture of 55.2 wt%Ni - 44.8 wt%Ti powder. A pulsed Nd:YAG laser was used; while laser pulse width and frequency were held constant at what are considered their optimal values (4 ms and 50 Hz, respectively), laser energy and scanning speeds were varied across samples to determine appropriate values for fabrication of high quality SMA parts . Different pre-placed powder thicknesses were deposited and then mechanically and physically studied. Optical microscopy, SEM, EDS, and XRD methods, as well as microhardness measurements, were used to examine the microstructural characteristics and hardness of the SMA samples. Also, differential scanning calorimetry (DSC) was performed to determine the transformation temperatures of the fabricated parts. The results confirmed the formation of crack-free solid surfaces in which two types of microstructure exist: solid (non-prose) and dendrite arms. EDS chemical composition analysis confirmed the absence of any impurity or oxidise in the cross section of the samples as well as the presence of only nickel and titanium. XRD spectrum analysis indicated the presence of Ni-Ti intermetallic phases, which are almost Ni-Ti but contain a small amount of Ti2Ni. The XRD results also indicated the presence of austenite and martensite phases, which are exchanged during heating or mechanical deformation. The hardness of these samples varied from 250 to 450 HV0.3. Several tests were carried out to investigate the shape memory effect (SME). It was observed that the fabricated SMAs can recover from the bent condition very quickly (i.e., 1 to 8 seconds) depending on their thickness. In general, the fabricated parts were first bent out of their original shapes then heated, in various ways, above the transformation temperature. To theoretically assess the SME performance of the fabricated SMAs with the proposed geometry two models were developed. The first model was established based upon a lump approach in which the part was exposed to an electrical current. The second model, however, was established based upon a finite element method in which a specific domain at one end of the sample was exposed to a source of heat. It was found that the theoretical outputs from both models were in good agreement with the experimental results.
254

Assessment of Laser Solid Freeform Fabrication for Realization of Shape Memory Alloy Components with Complex Geometry

Alhammad, Munther 23 January 2008 (has links)
The purpose of the present study was to assess the feasibility of a laser layer manufacturing technique for realization of shape memory alloy (SMA) components with complex geometry. Pre-placed laser solid freeform fabrication (LSFF) was utilized to produce straight and curvaceous SMA parts from a mixture of 55.2 wt%Ni - 44.8 wt%Ti powder. A pulsed Nd:YAG laser was used; while laser pulse width and frequency were held constant at what are considered their optimal values (4 ms and 50 Hz, respectively), laser energy and scanning speeds were varied across samples to determine appropriate values for fabrication of high quality SMA parts . Different pre-placed powder thicknesses were deposited and then mechanically and physically studied. Optical microscopy, SEM, EDS, and XRD methods, as well as microhardness measurements, were used to examine the microstructural characteristics and hardness of the SMA samples. Also, differential scanning calorimetry (DSC) was performed to determine the transformation temperatures of the fabricated parts. The results confirmed the formation of crack-free solid surfaces in which two types of microstructure exist: solid (non-prose) and dendrite arms. EDS chemical composition analysis confirmed the absence of any impurity or oxidise in the cross section of the samples as well as the presence of only nickel and titanium. XRD spectrum analysis indicated the presence of Ni-Ti intermetallic phases, which are almost Ni-Ti but contain a small amount of Ti2Ni. The XRD results also indicated the presence of austenite and martensite phases, which are exchanged during heating or mechanical deformation. The hardness of these samples varied from 250 to 450 HV0.3. Several tests were carried out to investigate the shape memory effect (SME). It was observed that the fabricated SMAs can recover from the bent condition very quickly (i.e., 1 to 8 seconds) depending on their thickness. In general, the fabricated parts were first bent out of their original shapes then heated, in various ways, above the transformation temperature. To theoretically assess the SME performance of the fabricated SMAs with the proposed geometry two models were developed. The first model was established based upon a lump approach in which the part was exposed to an electrical current. The second model, however, was established based upon a finite element method in which a specific domain at one end of the sample was exposed to a source of heat. It was found that the theoretical outputs from both models were in good agreement with the experimental results.
255

Shape-Dependent Nanocatalysis and the Effect of Catalysis on the Shape and Size of Colloidal Metal Nanoparticles

Narayanan, Radha 30 March 2005 (has links)
From catalytic studies in surface science, it has been shown that the catalytic activity is dependent on the type of metal facet used. Nanocrystals of different shapes have different facets. This raises the possibility that the use of metal nanoparticles of different shapes could catalyze different reactions with different efficiencies. The catalytic activity is found to correlate with the fraction of surface atoms located on the corners and edges of the tetrahedral, cubic, and spherical platinum nanoparticles. It is observed that for nanoparticles of comparable size, the tetrahedral nanoparticles have the highest fraction of surface atoms located on the corners and edges and also have the lowest activation energy, making them the most catalytically active. Nanoparticles have a high surface-to-volume ratio, which makes them attractive to use compared to bulk catalytic materials. However, their surface atoms are also very active due to their high surface energy. As a result, it is possible that the surface atoms are so active that their size and shape could change during the course of their catalytic function. It is found that dissolution of corner and edge atoms occurs for both the tetrahedral and cubic platinum nanoparticles during the full course of the mild electron transfer reaction and that there is a corresponding change in the activation energy in which both kinds of nanoparticles strive to behave like spherical nanoparticles. When spherical palladium nanoparticles are used as catalysts for the Suzuki reaction, it is found that the nanoparticles grow larger after the first cycle of the reaction due to the Ostwald ripening process since it is a relatively harsh reaction due to the need to reflux the reaction mixture for 12 hours at 100 oC. When the tetrahedral Pt nanoparticles are used to catalyze this reaction, the tetrahedral nanoparticles transform to spherical ones, which grow larger during the second cycle. In addition, studies on the effect of the individual reactant have also provided clues to the surface catalytic process that is taking place. In the case of the electron transfer reaction, the surface catalytic process involves the thiosulfate ions binding to the nanoparticle surface and reacting with the hexacyanoferrate (III) ions in solution. In the case of the Suzuki reaction, the surface catalytic mechanism of the Suzuki reaction involves the phenylboronic acid binding to the nanoparticle surface and reacting with iodobenzene via collisional processes.
256

Global Skeleton

Genctav, Murat 01 January 2011 (has links) (PDF)
A novel and unconventional shape description scheme is proposed which captures the hierarchy of parts and medial descriptors. Both the parts and the medial descriptors are extracted simultaneously, in a complementary fashion, using a real valued function defined over the shape domain. The function arises out of both global and local interactions within the shape domain and it is related to an extension of a linear elliptic PDE with an integral term. The part hierarchies, extracted via level sets and watersheds of the function, are organized into proper binary trees, and the medial descriptors, extracted via ridges and watersheds of the function, are organized as rooted depth-1 trees. The medial descriptors (we named global skeleton) consist of two distinct medial abstractions. The limbs and prominent boundary features are captured in the form of conventional skeletons. Secondly, the coarse structure of the shape is captured in the form of a watershed region, which is a powerful tool in respect to both stability and representation of prominent shape properties. Additionally, as an important technical contribution that addresses part matching, the randomized hierarchy tree is introduced that endows the part hierarchy tree with a probabilistic structure.
257

温度分布を規定する強制熱対流場の形状同定

片峯, 英次, KATAMINE, Eiji, 織田, 恭平, ODA, Kyohei, 畔上, 秀幸, AZEGAMI, Hideyuki 03 1900 (has links)
No description available.
258

熱変形分布を規定する熱弾性場における形状同定問題の解法

片峯, 英次, KATAMINE, Eiji, 平井, 雅大, HIRAI, Masahiro, 畔上, 秀幸, AZEGAMI, Hideyuki 09 1900 (has links)
No description available.
259

Synthesis and characterization of shape memory poly (epsilon-caprolactone) polyurethane-ureas

Ren, Hongfeng 17 January 2012 (has links)
A series of segmented poly (epsilon-caprolactone) polyurethane-ureas (PCLUUs) were prepared from poly (epsilon-caprolactone) (PCL) diol, different dissociates and chain extenders to improve the recovery stress of shape memory polymers. NMR and FT-IR were used to identify the structure of the synthesized shape memory polyurethane-ureas. Parameters such as soft segment content (molecular weight and content), chain extender and the rigidity of the main chain were investigated to understand the structure-property relationships of the shape memory polymer systems through DSC, DMA, physical property test, etc. Cyclic thermal mechanic tests were applied to measure the shape memory properties which showed that the recovery stress can be improved above 200% simply by modifying the chain extender. Meanwhile, the synthesis process was optimized to be similar to that of Spandex /LYCRA®. Continuous fibers were made from a wet spinning process, which indicated excellent spinnability of the polymer solution. Small angle neutron scattering (SANS) was used to study the morphology of the hard segment at different temperatures and stretch rates and found that the monodisperse rigid cylinder model fit the SANS data quite well. From the cylinder model, the radius of the cylinder increases with the increasing hard segment content. The SANS results revealed phase separation of hard and soft segments into nano scale domains.
260

Improvement of the one-way and two-way shape memory effects in ti-ni shape memory alloys by thermomechanical treatments

Urbina Pons, Cristina 11 July 2011 (has links)
Ti-Ni phase transformation behaviour is very sensitive to the thermal and mechanical history of the alloy. Thermomechanical cycling through the full transformation range may degrade the Ti-Ni functional properties (functional fatigue). These repeated transformation cycles cause changes in the SMA phase transformation behaviour due to the formation and accumulation of defects in the alloy microstructure. The main objective of this thesis is to establish the relationships between the changes in Ti-Ni phase transformation behaviour caused by thermomechanical processes, especially in the R-phase range, and the functional properties of the Ti-Ni shape memory alloys (SMAs). Establishing these relationships should allow us to find appropriate thermomechanical processes to substantially improve the Ti-Ni one-way and two-way shape memory effects. To achieve this objective, several experimental techniques are used including measuring variations of the electrical resistivity with temperature, X-ray diffraction, isothermal tension testing, thermal cycling under constant stress, and thermal cycling under zero stress. This study of the phase transformation changes caused by thermomechanical processes has led to a new way of interpreting resistivity curves for calculating the transformation temperatures. Moreover, we have determined how the R-phase influences the functional properties of SMA and, finally, we have substantially improved the properties of one-way and two-way shape memory effects by using thermal processes that avoid permanent deformation of the alloy. / Las transformaciones de fase en aleaciones de NiTi son altamente dependientes de la composición de la aleación, así como de la historia térmica y mecánica previa al uso de la SMA. El objetivo principal de esta tesis es establecer los vínculos existentes entre los cambios producidos en las transformaciones de fase por procesos termomecánicos y las propiedades funcionales en aleaciones con memoria de forma de Ti-Ni, tal que nos permita hallar los procesos termomecánicos más adecuados que proporcionen una mejora substancial en las propiedades funcionales de estas aleaciones. La determinación de estas relaciones, prestando especial atención a la fase-R, nos debe proporcionar las claves para incrementar las propiedades de memoria de forma y doble memoria de forma. Para la consecución de este objetivo se han usado diferentes técnicas de caracterización experimental: variación de la resistividad eléctrica con la temperatura (ER), difractometría de rayos X (DRX), ensayos de tracción isotérmicos, ciclados térmicos a tensión constante y ciclados térmicos a tensión nula. A través del estudio exhaustivo de las transformaciones de fase, se ha aportado una nueva interpretación de las curvas de resistividad para el cálculo de las temperaturas de transformación, se ha determinado la influencia de la fase-R en las propiedades funcionales de las SMA y se han mejorado substancialmente las propiedades de memoria simple y doble memoria de forma mediante procesos térmicos que evitan deformaciones permanentes antes del uso de la aleación. / Les transformacions de fase en aliatges de NiTi són altament dependents de la composició de l'aliatge, així com de la història tèrmica i mecànica prèvia a l'ús de la SMA. L'objectiu principal d'aquesta tesi és establir els vincles existents entre els canvis produïts en les transformacions de fase per processos termomecànics i les propietats funcionals en aliatges amb memòria de forma de Ti-Ni, tal que ens permeti trobar els processos termomecànics més adequats que proporcionin una millora substancial en les propietats funcionals d'aquests aliatges. La determinació d'aquestes relacions, prestant especial atenció a la fase-R, ens ha de proporcionar les claus per incrementar les propietats de memòria de forma i doble memòria de forma. Per a la consecució d'aquest objectiu s'han usat diferents tècniques de caracterització experimental: variació de la resistivitat elèctrica amb la temperatura (ER), difractometria de raigs X (DRX), assaigs de tracció isotèrmics, ciclats tèrmics a tensió constant i ciclats tèrmics a tensió nula. A través de l'estudi exhaustiu de les transformacions de fase, s'ha aportat una nova interpretació de les corbes de resistivitat per al càlcul de les temperatures de transformació, s'ha determinat la influència de la fase-R en les propietats funcionals de les SMA i s'han millorat substancialment les propietats de memòria simple i doble memòria de forma mitjançant processos tèrmics que eviten deformacions permanents abans de l'ús de l'aliatge.

Page generated in 0.0292 seconds