• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 7
  • 6
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

EVALUATION OF DI-NITROGEN FIXATION IN EARLY AND LATE DEVELOPMENTAL STAGES OF SOYBEAN (Glycine max [L.] Merr.)

Lemes Hamawaki, Raphael 01 August 2018 (has links)
Nitrogen (N) is present in proteins, enzymes, cell structures, purines and pyrimidines in DNA and RNA molecules, photosynthetic pigments, and several other types of molecules in all living organisms. Nonetheless, even though N makes up more than 78% of the atmosphere, it is reported to be the most frequent deficient nutrient in plants. Nitrate (NO3-) and ammonium (NH4+) are the N forms absorbed by plants from soil, but legume crops can establish symbiotic relationships with rhizobia bacteria, and fix N2 from the atmosphere. In soybean, increasing yield and protein content are raising the crop's N requirement; therefore, enhanced N2 fixation is seen as a reliable path to avoid the use of N fertilizers. In this study, the objective was to perform a comprehensive screening in greenhouse and field conditions of soybean genotypes for traits related to N2 fixation. The purpose was to identify among the soybean genotypes different N2 fixation profiles at early and late stages, as well as to investigate their capacity to accumulate above-ground N and supply carry-over N to following crops. The results showed different profiles among the soybean genotypes for early and late N2 fixation capacity, both in greenhouse and field evaluations. Different traits were correlated to either early or late N2 fixation activity. Soybean and winter-rye shoot dry mass were evaluated in the field to assess above-ground N accumulation and carry-over N, respectively. Soybean genotypes were identified with specific capacities to accumulate N in above-ground biomass or supply N to winter-rye. The patterns of N2 fixation identified in this study, as well as the different abilities to accumulate N above-ground or supply N to following crops, could assist in the selection of superior lines with improved N2 fixation capacity.
2

The impact of lentil and field pea seeding rates on dinitrogen fixation and subsequent nitrogen benefits in an organic cropping system

Usukh, Boldsaikhan 15 April 2010
There is a demand for new recommendations for pulse seeding rates that will meet the needs of organic farmers. This study was conducted to determine the impact of seeding rate on N2 fixation and N accumulation in lentil and pea and to examine the impact of different seeding rates of lentil and pea on the productivity and N-uptake (i.e., N benefit) in a subsequent wheat crop.<p> The study was performed between 2005 and 2007. Two sites were selected each year of the two-year experiment on certified organic farms in central Saskatchewan. At each location, lentil (<i>Lens culinaris</i> L.) cultivar CDC Sovereign and field pea (<i>Pisum sativum</i> L.) cultivar CDC Mozart were each seeded at five different rates. Wheat (<i>Triticum aestivum</i> L.) cultivar AC Elsa was sown as a non-fixing reference crop at a plant population density of 250 seeds m-2. In the following year, wheat was sown to assess the effect of the pulse seeding rate treatments on the succeeding crop.<p> The pulse crop seeding rates significantly affected the quantity of N2 fixed of lentil and field pea, although %Ndfa (80 to 88% and 79 to 85% for lentil and pea, respectively) typically was unaffected by seeding rate. Yield parameters of following wheat crop were not affected by the seeding rates of the previous pulses. Typically, N contributions increased with increasing seeding rates of both lentil and pea, but there was no detectable difference in N uptake by the following wheat grown on the both pulse stubble. The different seeding rates of organically grown lentil and field pea have impacts on the amount of N2 fixed and N contribution to the soil. However, the differences in N remaining in the soil at different seeding rates of the pulse crops were not detectable in the following wheat crop and the soil N in the following year.
3

Role of green manure options in organic cropping systems

Marufu, Gift 22 June 2010
On the Canadian prairies, organic production generally includes the use of annual green manure (GrM) crops, which are terminated using tillage to add nutrients and organic matter to the soil. However, in a GrM plough-down year, farmers face loss of income. As an alternative to growing traditional GrM crops, legumes can be grown alone or intercropped with cereals and harvested as green feed forage (GF) for use on-farm or for sale to other producers without depleting soil nitrogen (N) for the subsequent crop. We hypothesized that the GF system would have similar biomass, and N yield, and ultimately would return N into the soil. Furthermore, by intercropping a legume with a cereal, biological N2-fixation will be enhanced in the legume.<p> Field experiments, conducted over two years, were established at Vonda and Delisle, Saskatchewan, Canada. The experiment was conducted using a randomized complete block design (RCBD) with 16 treatments and four replicates in which field pea (<i>Pisum sativum</i> cv 40-10 silage pea), oat (<i>Avena sativa</i> L.cv AC Morgan), and triticale (X <i>Triticosecale</i> Wittmack cv Pika) were grown alone or in combination and managed as GrM or GF. Wheat and tillage fallow served as cropped and uncropped controls, respectively. The tillage fallow-control system was tilled twice in the growing season using a small tractor disc. The intercropped oat was seeded at three densities (50, 100, and 150 plants m-2) to determine whether increasing cereal density stimulated N2-fixation in the field pea.<p> The GrM system was sampled and incorporated (when the field pea was at full bloom) two weeks earlier than the GF system. Consequently, at both sites, all treatments in the GF system consistently yielded more dry matter and accumulated more N than treatments in the GrM system. At the Delisle site, where percent nitrogen derived from the atmosphere (%Ndfa) was compared, increasing cereal density did not increase N2-fixation in both management systems. However, pea in the GF system accumulated more than twice the amount of N (kg ha-1) from fixation as compared to pea in the GrM system, presumably because of the longer growth period.<p> Wheat grown following the GrM treatments produced more biomass and accumulated more N than wheat following the GF treatments. Wheat grown after the monoculture field pea as a GrM had greater yield than all treatments. As well, the GrM system returned more N to the soil than did the GF system. The extra two weeks of growth in the GF system resulted in the extraction of significant amounts of nutrients and probably moisture from the soil, which adversely affected yield and nutrient composition of the following wheat crop.<p> Although organic farmers may lose income in the plough-down year, on a longterm soil sustainability basis, the GrM system is a better option than the GF system as it returns nutrients to the soil, thus providing improved plant biomass, and N accumulation of subsequent crops. However, organic farmers growing GF for hay may benefit from the increased productivity of this system on a short-term basis. Thus, farmers pursuing GF options may need to adopt other means of sustaining soil productivity on a longer term. The tilled fallow-control system resulted in high amounts of biomass and N accumulation by the subsequent wheat crop, probably due to the fact that there were no nutrients taken up in the previous year and moisture was conserved in these treatments. However, this system may have less long-term benefits compared to the GrM regime, as no nutrients are returned through ploughing down a crop.
4

Impact of free-living diazotrophs, Azospirillum lipoferum and Gluconacetobacter azotocaptans, on growth and nitrogen utilization by wheat (Triticum aestivum cv. Lillian)

2013 April 1900 (has links)
Nitrogen (N) is an essential plant nutrient, widely applied as N-fertilizer to improve yields of agriculturally important crops. An alternative to fertilizer use could be the exploitation of plant growth-promoting bacteria, capable of enhancing growth and yield of many plant species. Azospirillum and Gluconacetobacter are root colonizing, free-living, N2-fixing bacteria (diazotrophs) with the potential to transfer fixed N to associated plants. The purpose of this study was to evaluate the agronomic efficiency of two diazotrophs, Azospirillum lipoferum and Gluconacetobacter azotocaptans, inoculated onto wheat. Physiological parameters and yield components were evaluated. The objectives of this study were to: 1) determine the survival of each diazotroph species on wheat seeds over time; 2) determine the survival of A. lipoferum and G. azotocaptans inoculated on wheat seed treated with a fungicide seed treatment, Dividend® XL RTA®; 3) determine if inoculation of wheat with the diazotrophs under controlled conditions causes an increase in dry matter, N2-fixation and N uptake; 4) determine if fertilizer N applied at three levels influences atmospheric N2-fixation by A. lipoferum or G. azotocaptans; 5) determine if inoculation of wheat with A. lipoferum or G. azotocaptans under field conditions causes any increase in dry matter, N2-fixation and N uptake; 6) determine if N-fertilization levels under field conditions influenced N2-fixation by A. lipoferum or G. azotocaptans. In order to meet these objectives lab, growth chamber, and field studies were completed. Laboratory investigations revealed that the decline in recovery of colony forming units (CFU) of G. azotocaptans was not significantly different (P<0.05) for any seed treatment. There was a general decrease in CFU over time regardless of seed treatment. Analysis of the recovered CFU of A. lipoferum over time showed that there was a significant difference (P<0.05) between both the non-sterilized seed and the Dividend® XL RTA® treated seed when compared sterilized seed. Recovery of CFU on sterilized seed declined at a more rapid rate compared to the other two seed treatments. Gluconacetobacter azotocaptans and A. lipoferum were not negatively influenced by the Dividend® XL RTA® seed treatment. Also, both diazotrophs were able to compete with other microorganisms that may have been on the seed coat of unsterilized seeds. Azospirillum lipoferum and G. azotocaptans were able to fix atmospheric N, but, there were no significant (P<0.05) differences between the diazotroph species. Additions of fertilizer N enhanced N2-fixation, in both the growth chamber and field studies. As the amount of fertilizer N increased, so did the %Ndfa and N uptake. In the growth chamber study, inoculated wheat, and fertilized with 12.2 and 24.5 µg N g-1 had the highest %Ndfa of 25.5%, and wheat fertilized with 24 µg N g-1 had the highest N uptake (1.3 g pot-1) at maturity. In the field study, inoculated wheat fertilized with of 80 kg N ha-1 had significantly higher (P<0.05) %Ndfa (10.5%) compared to wheat grown with the other fertilizer levels, which also corresponded to the highest N uptake in wheat plants (47 kg ha-1). The diazotrophs also affected the partitioning of N in the wheat plants differently. Wheat inoculated with A. lipoferum had significantly higher (P<0.05) amounts of N accumulated in heads of plants, and wheat inoculated with G. azotocaptans had significantly higher (P<0.05) amounts of N accumulated in stems of plants. However, this trend was not evident in the field study.
5

The impact of lentil and field pea seeding rates on dinitrogen fixation and subsequent nitrogen benefits in an organic cropping system

Usukh, Boldsaikhan 15 April 2010 (has links)
There is a demand for new recommendations for pulse seeding rates that will meet the needs of organic farmers. This study was conducted to determine the impact of seeding rate on N2 fixation and N accumulation in lentil and pea and to examine the impact of different seeding rates of lentil and pea on the productivity and N-uptake (i.e., N benefit) in a subsequent wheat crop.<p> The study was performed between 2005 and 2007. Two sites were selected each year of the two-year experiment on certified organic farms in central Saskatchewan. At each location, lentil (<i>Lens culinaris</i> L.) cultivar CDC Sovereign and field pea (<i>Pisum sativum</i> L.) cultivar CDC Mozart were each seeded at five different rates. Wheat (<i>Triticum aestivum</i> L.) cultivar AC Elsa was sown as a non-fixing reference crop at a plant population density of 250 seeds m-2. In the following year, wheat was sown to assess the effect of the pulse seeding rate treatments on the succeeding crop.<p> The pulse crop seeding rates significantly affected the quantity of N2 fixed of lentil and field pea, although %Ndfa (80 to 88% and 79 to 85% for lentil and pea, respectively) typically was unaffected by seeding rate. Yield parameters of following wheat crop were not affected by the seeding rates of the previous pulses. Typically, N contributions increased with increasing seeding rates of both lentil and pea, but there was no detectable difference in N uptake by the following wheat grown on the both pulse stubble. The different seeding rates of organically grown lentil and field pea have impacts on the amount of N2 fixed and N contribution to the soil. However, the differences in N remaining in the soil at different seeding rates of the pulse crops were not detectable in the following wheat crop and the soil N in the following year.
6

Role of green manure options in organic cropping systems

Marufu, Gift 22 June 2010 (has links)
On the Canadian prairies, organic production generally includes the use of annual green manure (GrM) crops, which are terminated using tillage to add nutrients and organic matter to the soil. However, in a GrM plough-down year, farmers face loss of income. As an alternative to growing traditional GrM crops, legumes can be grown alone or intercropped with cereals and harvested as green feed forage (GF) for use on-farm or for sale to other producers without depleting soil nitrogen (N) for the subsequent crop. We hypothesized that the GF system would have similar biomass, and N yield, and ultimately would return N into the soil. Furthermore, by intercropping a legume with a cereal, biological N2-fixation will be enhanced in the legume.<p> Field experiments, conducted over two years, were established at Vonda and Delisle, Saskatchewan, Canada. The experiment was conducted using a randomized complete block design (RCBD) with 16 treatments and four replicates in which field pea (<i>Pisum sativum</i> cv 40-10 silage pea), oat (<i>Avena sativa</i> L.cv AC Morgan), and triticale (X <i>Triticosecale</i> Wittmack cv Pika) were grown alone or in combination and managed as GrM or GF. Wheat and tillage fallow served as cropped and uncropped controls, respectively. The tillage fallow-control system was tilled twice in the growing season using a small tractor disc. The intercropped oat was seeded at three densities (50, 100, and 150 plants m-2) to determine whether increasing cereal density stimulated N2-fixation in the field pea.<p> The GrM system was sampled and incorporated (when the field pea was at full bloom) two weeks earlier than the GF system. Consequently, at both sites, all treatments in the GF system consistently yielded more dry matter and accumulated more N than treatments in the GrM system. At the Delisle site, where percent nitrogen derived from the atmosphere (%Ndfa) was compared, increasing cereal density did not increase N2-fixation in both management systems. However, pea in the GF system accumulated more than twice the amount of N (kg ha-1) from fixation as compared to pea in the GrM system, presumably because of the longer growth period.<p> Wheat grown following the GrM treatments produced more biomass and accumulated more N than wheat following the GF treatments. Wheat grown after the monoculture field pea as a GrM had greater yield than all treatments. As well, the GrM system returned more N to the soil than did the GF system. The extra two weeks of growth in the GF system resulted in the extraction of significant amounts of nutrients and probably moisture from the soil, which adversely affected yield and nutrient composition of the following wheat crop.<p> Although organic farmers may lose income in the plough-down year, on a longterm soil sustainability basis, the GrM system is a better option than the GF system as it returns nutrients to the soil, thus providing improved plant biomass, and N accumulation of subsequent crops. However, organic farmers growing GF for hay may benefit from the increased productivity of this system on a short-term basis. Thus, farmers pursuing GF options may need to adopt other means of sustaining soil productivity on a longer term. The tilled fallow-control system resulted in high amounts of biomass and N accumulation by the subsequent wheat crop, probably due to the fact that there were no nutrients taken up in the previous year and moisture was conserved in these treatments. However, this system may have less long-term benefits compared to the GrM regime, as no nutrients are returned through ploughing down a crop.
7

Mungbean [Vigna radiata (L.) Wilczek]: Protein-rich Legume for Improving Soil Fertility and Diversifying Cropping Systems

Diatta, Andre Amakobo 21 April 2020 (has links)
Drought, salinity, and low soil fertility have negative impacts on agricultural productivity, resulting in food scarcity and nutritional insecurity, particularly in Sub-Saharan Africa. Mungbean [Vigna radiata (L.) R. Wilczek] has seen increased interest as a short-duration and drought tolerant legume crop, capable of atmospheric N₂ fixation. Mungbean is a protein and iron-rich legume and can be used as vegetable or grain for human consumption or multipurpose crop. At present, few studies have simultaneously explored the best agronomic practices for mungbean cultivation and evaluated its potential for increasing crop yields via intercropping systems and improving soil fertility through biological N₂ fixation. To understand the agronomic practices and soil physical properties limiting mungbean production, the impacts of two mungbean cultivars (Berken and OK2000) with and without inoculation with Bradyrhizobium spp. grown in loamy sand and silt loam soils on mungbean growth and yield were investigated under glasshouse conditions. Promising results from this study led to the introduction of mungbean into pearl millet systems in Senegal and evaluation of the effects of intercropping on growth, yields, land equivalent ratio (LER), canopy cover estimates, and normalized difference vegetation index (NDVI). Finally, we evaluated plant growth and N₂ fixation of five mungbean genotypes grown in two soil textures using the ¹⁵N natural abundance technique leading to recommendations for those with the greatest overall benefit to the cropping system. The literature review shows mungbean often proposed as a strategic crop for increasing legume diversification within current cropping systems and providing increased food security as well as market diversification and economic sustainability. The greenhouse study revealed that OK2000 cultivar produced significantly higher yield when inoculated and planted on a silt loam soil than other treatments, indicating the importance of inoculation and soil texture in mungbean establishment. Intercropping mungbean and millet significantly (p≤ 0.05) increased combined yields (35% to 100% increase) and LER compared to sole millet cropping systems. Canopy cover estimates and NDVI values significantly increased up to 60% and 30%, respectively, in millet-mungbean intercropping over millet alone. The N2 fixation study showed that %Ndfa of mungbean was higher when grown in the loamy sand soil (27% increase). However, soil N uptake (235 mg plant⁻¹) and amount of N fixed (67 mg plant⁻¹) were greater in the silt loam soil. Among genotypes, IC 8972-1 significantly (p≤ 0.05) derived less N from the atmosphere (23%) but took more soil N (155 mg plant⁻¹) which yielded significantly greater dry biomass (7.85 g plant⁻¹) and shoot N content (200 mg plant⁻¹). The results from the N₂ fixation study indicated that choice of mungbean genotype can contribute to reducing N needs of agricultural systems. Overall, this research project demonstrated that mungbean has the potential for diversifying smallholder agriculture and adding biologically fixed N into soils, in line with transformative adaptation strategies being promoted for sustainable agriculture. Further research and development programs on good cultural practices, adaptation to cropping systems, and nutritional benefits for human consumption can promote mungbean cultivation in SSA. / Doctor of Philosophy / Global population growth is expected to reach 9.8 billion in 2050 while climate change is predicted to reduce food production. Sustainable solutions are needed for increasing food availability and satisfying nutritional needs under changing climatic conditions. Mungbean is a viable option because it is a legume crop capable of restoring soil fertility and has low water requirements. Mungbean also contains high levels of protein and iron and can, therefore, provide a nutritious and healthy food. Although the agronomic benefits of mungbean have been studied, best cultural practices and its impact on farming systems and soil fertility are scattered. The objectives of this research were to identify the best agronomic practices for mungbean production, assess its effects when grown together with millet, and measure its nitrogen contribution to the soil. The results showed that selecting the best genotypes to be grown in a particular soil texture can significantly increase mungbean growth and yield. In addition, incorporation of mungbean into cereal-based farming systems demonstrated its capacity for improving agricultural production in a low-input environment. Assessment of nitrogen fixation by mungbean showed that it can naturally add nitrogen into the soils, the most limiting plant nutrient, reducing nitrogen application needs. Thus, the ability of mungbean to diversify farming systems, improve soil fertility, and deliver nutritious food will provide agronomic, environmental, and economic benefits to farmers, especially in food-insecure households. However, exploitation of the full potential of mungbean won't be achieved without understanding the major factors influencing mungbean cultivation and production.

Page generated in 0.0387 seconds