• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quelques résultats mathématiques et simulations numériques d'écoulements régis par des modèles bifluides.

Ramos, David 21 December 2000 (has links) (PDF)
L'objet de cette thèse est l'étude de quelques aspects de <br />la notion d'hyperbolicité, plus particulièrement de la <br />relation qui existe entre celle-ci et la nature bien posée <br />d'un problème de Cauchy obtenu à partir d'un système<br />d'équations aux dérivées partielles issu de la mécanique <br />des fluides ou la réalisation de la simulation numérique <br />d'un tel problème.<br /><br />Dans un premier temps, nous rappelons en quoi la notion de<br />linéarisation d'un système d'équations aux dérivées <br />partielles semble naturelle à l'étude de ce système et <br />comment, de l'étude de ces problèmes linéarisés, plus <br />précisément de leur nature bien posée c'est-à-dire de leur <br />stabilité, découle la notion d'hyperbolicité.<br /><br />Nous étudions ensuite le cas particulier d'un modèle à <br />quatre équations pour un écoulement bifluide comportant des <br />termes de diffusion pour les équations de quantité de <br />mouvement. Nous montrons alors que, bien que, pour ce <br />système, l'ajout des termes de diffusion n'entraîne pas <br />l'hyperbolicité du modèle obtenu, les problèmes de Cauchy <br />construits à partir de la linéarisation de ce système, <br />autour d'un état constant, sont désormais bien posés.<br /><br />Enfin, nous considérons le cas d'un modèle à cinq équations <br />pour un écoulement bifluide. Ce modèle ne nécessite pas de <br />loi de fermeture algébrique (équations d'état ou lois <br />tabulées) mais comporte une équation aux dérivées <br />partielles portant sur la pression. Le système ainsi <br />obtenu n'est pas hyperbolique mais les valeurs propres de <br />l'opérateur d'advection sont toutes réelles. La simulation<br />numérique d'un écoulement régi par ce modèle, pour le cas <br />test du robinet de Ransom, ne fait néanmoins pas apparaître <br />les instabilités numériques que la nature mal posée du<br />linéarisé nous faisait craindre et qui sont présentes dans <br />les simulations réalisées à partir du modèle isentropique <br />classique à quatre équations.

Page generated in 0.1118 seconds