• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Toward functional characterization of <i>Triticum aestivum WFCA</i>-coding sequences

Hoffman, Travis L. 06 July 2012
<p>Flowering is a critical step in the plant life cycle. If flowering occurs too early or too late, seed production suffers. Flowering is regulated through numerous flowering repressors. As long as these repressors persist, the plant will remain in a vegetative growth stage. Some plants possess two separate genetic pathways, the autonomous pathway and the vernalization pathway, that promote the transition to flowering through stable downregulation of flowering repressors. Once the plant achieves floral competence, it will flower under inductive environmental conditions.</p> <p>In <i>Arabidopsis</i>, <i>FCA</i> is a key autonomous pathway gene, acting with <i>FY</i> to promote the floral transition. Recently, gene sequences resembling <i>FCA</i> were cloned from hexaploid wheat (<i>Triticum aestivum</i>) and designated as <i>WFCA</i>. WFCA shows numerous similarities to the FCA peptide, especially regarding three key regions: two RNA Recognition Motifs and the WW domain. This study seeks to determine if <i>WFCA</i> genes function similar to <i>FCA</i> by determining if they are able to complement the <i>fca-1</i> mutant of <i>Arabidopsis thaliana</i>.</p> <p>T1 progeny from an <i>Arabidopsis fca-1</i> plant transformed with <i>WFCA</i> were grown without vernalization and assayed for the final leaf number (FLN). The late flowering <i>fca-1</i> control plants bolted with an average FLN of 14.8 while the T1 population had an average FLN of 14.3. Although the numerical difference is slight, the results are statistically significant, and suggest that <i>WFCA</i> genes may have some degree of flowering promotion activity in <i>Arabidopsis</i>. The lack of strong complementation may be due to divergence of the <i>WFCA</i> genes from their <i>Arabidopsis</i> counterparts. With increasing evidence for divergence in flowering promotion between monocot and dicot species, the development of a robust monocot model system appears to be critical to provide a good framework to assist studies of the particular nuances of the monocot flowering process.</p>
2

Toward functional characterization of <i>Triticum aestivum WFCA</i>-coding sequences

Hoffman, Travis L. 06 July 2012 (has links)
<p>Flowering is a critical step in the plant life cycle. If flowering occurs too early or too late, seed production suffers. Flowering is regulated through numerous flowering repressors. As long as these repressors persist, the plant will remain in a vegetative growth stage. Some plants possess two separate genetic pathways, the autonomous pathway and the vernalization pathway, that promote the transition to flowering through stable downregulation of flowering repressors. Once the plant achieves floral competence, it will flower under inductive environmental conditions.</p> <p>In <i>Arabidopsis</i>, <i>FCA</i> is a key autonomous pathway gene, acting with <i>FY</i> to promote the floral transition. Recently, gene sequences resembling <i>FCA</i> were cloned from hexaploid wheat (<i>Triticum aestivum</i>) and designated as <i>WFCA</i>. WFCA shows numerous similarities to the FCA peptide, especially regarding three key regions: two RNA Recognition Motifs and the WW domain. This study seeks to determine if <i>WFCA</i> genes function similar to <i>FCA</i> by determining if they are able to complement the <i>fca-1</i> mutant of <i>Arabidopsis thaliana</i>.</p> <p>T1 progeny from an <i>Arabidopsis fca-1</i> plant transformed with <i>WFCA</i> were grown without vernalization and assayed for the final leaf number (FLN). The late flowering <i>fca-1</i> control plants bolted with an average FLN of 14.8 while the T1 population had an average FLN of 14.3. Although the numerical difference is slight, the results are statistically significant, and suggest that <i>WFCA</i> genes may have some degree of flowering promotion activity in <i>Arabidopsis</i>. The lack of strong complementation may be due to divergence of the <i>WFCA</i> genes from their <i>Arabidopsis</i> counterparts. With increasing evidence for divergence in flowering promotion between monocot and dicot species, the development of a robust monocot model system appears to be critical to provide a good framework to assist studies of the particular nuances of the monocot flowering process.</p>
3

Ein Netzwerk von heterodimerisierenden C/S1 AtbZIP-Transkriptionsfaktoren und seine Funktion in Seneszenz, Stressantwort und Samenentwicklung / A network of heterodimerising C/S1 AtbZIP transcription factors and its function in senescence, stress response and seed development

Weltmeier, Fridtjof 19 January 2006 (has links)
No description available.

Page generated in 0.2934 seconds