• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Automatic Point Cloud Registration for Mobile Mapping LiDAR Data : Developing an Automated Method for Registration of Light Rail Environment / Automatisk registrering av punktmoln från Mobile Mapping LiDAR data : Framställning av en automatisk metod för registrering i spårvägsmiljö

Larsson, Milton, Wardman, Ellinor January 2024 (has links)
Maintaining an inventory of transportation infrastructure assets is vital for effective management and maintenance. LiDAR (Light Detection and Ranging) can be a useful resource for this purpose by collecting detailed 3D information. Mobile Mapping Systems (MMS) refers to collecting geospatial data by mounting laser scanners on top of a moving vehicle, e.g. a car. The LiDAR collects XYZ-coordinates of the environment by emitting laser pulses toward the surveyed objects. This enables an effective way to store and survey built-up urban areas that otherwise would need an on-site presence. WSP uses Mobile Mapping (MM) to capture and visualize infrastructure, primarily for inventory purposes. Currently, the point cloud registration in the MM-process is labor-intensive, so the company is looking to automate it. This thesis aims to investigate methods to automate the process of point cloud registration that eliminates manual labor. The proposed method was evaluated with regards to its accuracy, advantages and disadvantages. The study area of the thesis was a light rail facility with surrounding residential buildings and vegetation. The proposed method was implemented in Python and utilizes open source libraries. The registration uses Fast Global Registration (FGR) for coarse alignment with Iterative Closest Point (ICP) for fine refinement. The FGR algorithm finds a rigid transformation between a pair of point clouds by establishing a feature correspondence set between the point clouds. The algorithm utilizes Fast Point Feature Histograms (FPFH) that simplifies the description of 3D point relationships as the feature descriptors. The object used for registration is the general area around catenary poles. The segments between poles is adjusted by linear interpolation of the obtained transformation matrices from the registration. The results of this thesis show that automatic point cloud registration is feasible. However, while the proposed method improves registration over raw data, it does not fully replace WSP's current procedure.  The advantages of the proposed method are that it does not require classified data and is open source. The main source of error in the method is the presence of vegetation, and an experiment was conducted to support this hypothesis. The experiment shows that dense vegetation skews the registration, and generates an incorrect transformation matrix. Furthermore, the proposed method is only semi-automated, as it still needs manual post-processing. Accuracy assessment showed that removing outlier, presumably caused by vegetation, improved the planar offsets. Further studies to improve the result could utilize machine learning which could identify and extract poles for registration or remove surrounding vegetation. / Att upprätthålla inventering av tillgångar av transportinfrastruktur är avgörande för effektiv förvaltning och underhåll samt för att tillhandahålla korrekta data och underlätta beslutsfattande. LiDAR-data (Light Detection and Ranging) kan vara ett användbart verktyg för detta ändamål genom att samla in detaljerad 3D-information. Mobile Mapping Systems (MMS) refererar till att samla geospatial data genom att montera laserskannrar ovanpå taket på ett rörligt fordon, exempelvis en bil. LiDAR samlar XYZ-koordinater av kringliggande miljö genom att sända ut laserpulser mot de undersökta objekten. Detta möjliggör ett effektivt sätt att förvara och undersöka bebyggda stadsmiljöer som annars skulle behöva fysisk närvaro. WSP använder Mobile Mapping (MM) för att samla och visualisera infrastruktur, främst för inventeringsändamål. För närvarande är punktmolnregistreringen i MM-processen manuellt arbetskrävande, och därför vill WSP se en automatisering av processen. Detta examensarbete syftar till att undersöka metoder för att automatisera processen för registrering av punktmoln som eliminerar manuellt arbete. Den utvecklade metoden kommer att utvärderas med avseende på dess noggrannhet, för- och nackdelar. Arbetets studieområde är en järnvägsanläggninng med omgivande av bostadshus och vegetation. Den föreslagna metoden implementerades i Python och använder sig av open source-bibliotek. Registeringen tillämpar Fast Global Registration (FGR) för grov justering av punktmolnen, och Iterative Closest Point (ICP) för finjustering. FGR-algoritmen hittar en stel transformation mellan två punktmoln genom att etablera ett set av korresponderande attribut. Algoritmen använder Fast Point Feature Histograms (FPFH) som förenklar euklidiska förhållanden till attributbaserade förhållanden. Objekt som används för registrering är det generella området kring kontaktledningsstolpar. Segmenten mellan stolpar justeras genom linjär interpolation av de erhållna transformationsmatriserna från registreringen. Resultaten av detta arbete visar att automatisk registrering av punktmoln är genomförbar, och att metoden förbättrar registreringen jämfört med den råa datan. Den är dock inte tillräckligt bra för att helt ersätta den nuvarande proceduren som används av WSP. Fördelarna med den föreslagna metoden är att den inte kräver klassificerad data och är open source. Den huvudsakliga felkällan i metoden är förekomsten av vegetation, och ett experiment utfördes för att stödja denna hypotes. Experimentet visar att tät vegetation snedvrider registreringen och genererar en felaktig transformationsmatris. Vidare, är den föreslagna metoden endast semi-automatiserad, eftersom den fortfarande kräver manuell efterbearbetning. Noggrannhetsbedömningn visade att borttagningen av avvikande värden, förmodligen orsakade av vegetation, förbättrade den plana förskjutningen. Vidare studier för att ge ett mer tillfredsställande resultatet kan möjligen vara att använda maskininlärning för att identifiera och extrahera stolpar för matching, samtidigt som växtligheten kan elimineras.

Page generated in 0.117 seconds