• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Construction de (phi,gamma)-modules en caractéristique p / Construction of (phi,gamma)-modules in characteristic p

Vienney, Mathieu 06 November 2012 (has links)
Cette thèse est constituée de deux parties indépendantes, étudiant deux aspects de la théorie des (φ,Γ)-modules en caractéristique p. La première partie porte sur l'étude de la réduction modulo p des représentations cristallines irréductibles de dimension deux. Nous donnons, pour des poids k ≤ p², un calcul explicite de la réduction de V(k,a) pour a dans un disque fermé centré en zéro, généralisant ainsi des résultats déjà connus pour k ≤ 2p. En particulier, nous calculons le plus grand rayon possible pour ce disque, et montrons que dans certains cas, la réduction qui est constante à l'intérieur du disque change sur son bord. Dans la seconde partie, nous nous intéressons aux représentations d'un sous-groupe de Borel de GL[indice]2(Q[indice]p) sur un corps de caractéristique p, et en particulier à celles qui sont lisses, irréductibles et admettent un caractère central. Une méthode pour construire de telles représentations à partir de (φ,Γ)-modules irréductibles a été décrite par Colmez dans sa construction de la correspondance de Langlands p-adique. Après avoir donné un cadre un peu plus général dans lequel la construction de Colmez fonctionne encore, nous classifions les représentations irréductibles du Borel, prouvant que la construction précédente permet d'obtenir toutes les représentations de dimension infinie. Lorsque le corps des coefficients est fini, ou algébriquement clos, nous disposons d'une interprétation galoisienne des (φ,Γ)-modules irréductibles, et la classification précédente permet alors d'obtenir une correspondance entre ces représentations du Borel et des représentations galoisiennes modulaires. / This thesis is made of two independent parts, dealing with two different aspects of characteristic p (φ,Γ)-modules. In the first part we study the reduction modulo p of -2-dimensional irreducible crystalline representations. For weights k ≤ p2, we give an explicit description of the reduction V(k,a) for a belonging to a closed disk centered at zero, generalizing results already known for k ≤ 2p. We explicitely compute the biggest possible radius for this disk, and prove that in some cases, the reduction which is constant on the interior of the disk is different for a belonging to the border of the disk. In the second part, we study the smooth, irreducible representations of a Borel subgroup of GL[indice]2(Q[indice]p) over a field of characteristic p and admitting a central character. One way of constructing such representations from irreducible (φ,Γ)-modules was described by Colmez in his construction of the p-adic Langlands correspondence. After giving a more general framework for Colmez's construction, we classify the irreducible representations of the Borel subgroup, proving that the previous construction already gives all the infinite dimensional representations. When the coefficient field is finite, Fontaine's equivalence combined with the previous classification gives a correspondence between these representations of a Borel subgroup of GL[indice]2(Q[indice]p) and modular galois representations.
2

G-structures entières de représentations cristallines

Dorat, Lionel 12 June 2006 (has links) (PDF)
Jean-Marc Fontaine a montré que la catégorie tannakienne des représentations cristallines du groupe de Galois d'un corps local K est équivalente à celle des Phi-modules filtrés sur K admissibles. De plus, la théorie de Fontaine-Laffaille, sous certaines restrictions, précise ceci à l'aide d'un foncteur V_cris qui induit une équivalence abélienne entre les réseaux fortement divisibles des Phi-modules filtrés admissibles et les réseaux galoisiens des représentations galoisiennes correspondantes. <br /><br />Le but de cette thèse est d'étudier plus en détail le foncteur V_cris. A cause des restrictions liées à la théorie de Fontaine-Laffaille, les catégories considérées pour les réseaux ne sont pas stables par produit tensoriel. Mais nous montrons que malgré ce problème, V_cris a de bonnes propriétés tannakiennes, qui conduisent à des applications intéressantes pour les représentations cristallines à valeurs dans les points sur Zp d'un groupe algébrique lisse sur Zp.<br /><br />Le point clé est la construction d'un foncteur, qui à un Phi-module filtré M (vérifiant les conditions de Fontaine-Laffaille) associe un (Phi,Gamma)-module dont la représentation galoisienne associée s'identifie fonctoriellement à V_cris(M), et qui préserve le produit tensoriel (sous certaines conditions). Ce foncteur a un lien très fort avec la théorie des modules de Wach, et c'est cela qui permet d'utiliser toute la force de l'équivalence de catégories entre les représentations galoisiennes sur Zp et les (Phi,Gamma)-modules.
3

Autour des nombres de Tamagawa / On Tamagawa Numbers

Laurent, Arthur 28 June 2013 (has links)
Les nombres de Tamagawa des courbes elliptiques apparaissent dans la formulation de la conjecture de Birch et Swinnerton-Dyer comme certains facteurs locaux. Bloch et Kato (1990) ont trouvé une vaste généralisation de cette définition classique en termes de la théorie de Hodge p-adique. Ils ont associé un nombre de Tamagawa Tam(T) à tout réseau T de représentations p-adiques de de Rham au sens de J.-M. Fontaine. Ces nombres interviennent dans les conjectures de Bloch et Kato sur les valeurs spéciales des fonctions L des motifs.J.-M. Fontaine et B.Perrin-Riou ont formulé une conjecture reliant Tam(T) et le nombre de Tamagawa Tam(T*}(1)) de la représentation duale. Cette conjecture est connue pour les représentations cristallines ce qui permet de calculer explicitement les nombres de Tamagawa des représentations cristallines dont les poids de Hodge-Tate sont tous positifs. En revanche, dans la plupart des autres cas, nous n'avons pas de méthode de calcul explicite. Cette thèse a pour but de donner un encadrement des nombres de Tamagawa des représentations absolument cristallines le long de la tour cyclotomique sans hypothèses supplémentaires sur les poids de Hodge-Tate. Le premier chapitre de cette thèse est dédié à des rappels sur la théorie de Hodge p-adique, la classification de Fontaine des représentations p-adique de corps locaux via la théorie des (phi, Gamma)-modules, sur la cohomologie galoisienne, sur les modules de Wach ou sur la cohomologie d'Iwasawa. Le second chapitre est dédié à l'exponentielle de Bloch and Kato. Seront rappelées sa définition et sa construction de l'exponentielle de Bloch and Kato en termes de (phi, Gamma)-modules faite par D.Benois. Cette dernière construction permet de généraliser deux résultats de D.Benois et L.Berger qui relient l'exponentielle aux modules de Wach et qui permet de décrire des objets qui apparaissent naturellement dans l'étude des nombres de Tamagawa. Le dernier chapitre est le cœur de cette thèse. Nous commencerons en définissant les nombres de Tamagawa Tam(T) et en donnant certaines propriétés et résultats déjà connus. Nous énonçons ensuite le théorème final qui donne un encadrement des nombres de Tamagawa d'une représentation absolument cristalline V. Y sont également donnés certains cas d'égalité qui permettent de retrouver des formules connues --- lorsque V est positive ou lorsqu'elle provient d'une courbe elliptique et plus généralement d'un groupe formel de dimension 1 et de hauteur 2. Pour prouver ces résultats, nous écrivons les nombres de Tamagawa sous forme d'un indice généralisé dans lequel apparaissent les objets étudiés dans le chapitre précédent. La thèse se termine avec l'étude de plusieurs cas particuliers qui permettent de retrouver des résultats déjà connus. / Tamagawa numbers of elliptic curves appear in the Birch and Swinnerton-Dyer conjecture as local factors. Bloch and Kato generalized the definition using p-adic Hodge theory in 1990. Indeed they associated a number Tam(T) to each lattice T of de Rham representation in the sense of J-M\,Fontaine. This Tamagawa numbers are used in the conjectures of Bloch and Kato on the special values of L-functions of motives.J-M\,Fontaine and B.\,Perrin-Riou expressed a conjecture linking Tam(T) to the Tamagawa number Tam(T*(1)) of the dual representation. This conjecture is now well known for crystalline representations. This yields an explicit formula for Tamagawa number of crystalline p-adic representations having positive Hodge-Tate weights.On the other hand, we have no explicit formula for Tamagawa numbers of most of the crystalline representations. The purpose of the thesis is to give bounds of Tamagawa numbers of crystalline p-adic representations of unramified local field along the cyclotomic tower without further conditions on the Hodge-Tate weights.The first chapter of this thesis is dedicated to reminders on p-adic Hodge-Tate theory, Fontaine's classification of p-adic representations of local fields via (phi, Gamma)-modules, Galois and Iwasawa cohomology, Wach modules etc.The second chapter is dedicated to the Bloch and Kato's exponential map. We will recall its definition and its construction in terms of (phi, Gamma)-modules due to D.Benois. This construction will lead to the generalization of two results of D.\,Benois and L.\,Berger which link the exponential map and Wach modules and give a good description of the objects which naturally appear in the study of Tamagawa numbers.The last chapter is the heart of the thesis. We will begin by giving a definition of Tamagawa number Tam(T) and some first properties and results on theses numbers.We will next express the main theorems which give bounds of Tamagawa numbers of crystalline p-adic representations of unramified local field along the cyclotomic tower. We will also give equality conditions. This allows us to recover already known results such as Tamagawa numbers of positive crystalline representations or of representations coming from elliptic curves.To prove these results, we will write Tamagawa numbers as a generalized index of the modules defined in terms of Wach modules. Theses modules have been deeply studied in the second chapter of this thesis.

Page generated in 0.0644 seconds