• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 744
  • 347
  • 118
  • 70
  • 51
  • 30
  • 28
  • 17
  • 10
  • 10
  • 8
  • 8
  • 8
  • 6
  • 5
  • Tagged with
  • 1796
  • 395
  • 274
  • 258
  • 146
  • 139
  • 113
  • 103
  • 101
  • 93
  • 73
  • 73
  • 71
  • 71
  • 70
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Chitosan-Sericin Blend Membranes for Controlled Release of Drugs

Eslami, Shahabedin 22 December 2011 (has links)
The peak and valley problems caused by oral administration, injection or other conventional methods, call for developing systems that can deliver therapeutics more effectively. As one of the techniques, diffusion-controlled drug release membranes have significant interest due to great ease with which they can be designed to achieve near-zeroth-order release kinetics. Since diffusion is the rate-limiting step in these systems, determining the permeability and diffusivity of drug molecules in the membrane is therefore important in evaluating drug release performance. This study focuses on the Membrane Permeation Controlled Release (MPC) system, which involves a non-porous (dense) membrane, comprising of two biopolymers, sericin and chitosan. Ciprofloxacin hydrochloride and (+)-cis-diltiazem hydrochloride were used as hydrophilic model drugs, and nitro-2-furaldehyde semicarbazone (Nitrofurazon) was used as a hydrophobic model drug. Permeation experiments were carried out in a semi-infinite reservoir/receptor system to simulate in-vitro drug release. The intrinsic permeability and diffusivity (P, D) of the drugs through the membranes were determined using a modified time-lag method based on short time permeation and mass balance method based on long time permeation. The partition coefficients Kd of the drugs in the membranes and the swelling degree of the membranes were determined by sorption/desorption experiments. The diffusivities of the drugs were also determined from the sorption/desorption kinetics. Over the experimental ranges tested, the drug concentration and membrane cross-linking did not have significant effects on these parameters presumably due to the relatively low drug concentrations and mild crosslinkings of the membranes. The diffusivity coefficients of ciprofloxacin hydrochloride, (+)-cis-diltiazem hydrochloride and nitrofurazon in the membranes were found to be in the range of (2.0-2.6)×〖10〗^(-9)±2.6×〖10〗^(-10) cm2/s, (2.5-2.6) ×〖10〗^(-9)±1.1×〖10〗^(-10) and (38-134) ×〖10〗^(-9)±33.1×〖10〗^(-9) (cm2/s), respectively, and their permeability coefficients were in the range of (24-29)×〖10〗^(-8),(51-52) ×〖10〗^(-8) and (131-169) ×〖10〗^(-8) (cm2/s), respectively. The partition coefficients were determined to be around 0.91±0.21, 25±0.12 and 26±0.31, respectively. The diffusivity coefficients determined from sorption experiments for ciprofloxacin hydrochloride, diltiazem hydrochloride and nitrofurazon were found to be in the range of (3.2-7.6) ×〖10〗^(-9)±6.3×〖10〗^(-8), (6-10) ×〖10〗^(-9)±2.6×〖10〗^(-8) and (15-18) ×〖10〗^(-9)±2.7×〖10〗^(-7) (cm2/s), respectively. Also the diffusivity coefficients determined from sorption experiments for ciprofloxacin hydrochloride, diltiazem hydrochloride and nitrofurazon were in the range of (20-47) ×〖10〗^(-9), (12-24) ×〖10〗^(-9) and (11-20) ×〖10〗^(-9) (cm2/s), respectively. Nonetheless the differences in the diffusivities calculated from permeation and sorption/desorption experiments are considered to be acceptable, in view of the different experimental techniques used in this work, for the purpose of comparison of the membrane diffusivity and permeability.
272

Potential Applications of Silk Fibroin as a Biomaterial

Bailey, Kevin 07 June 2013 (has links)
Fibroin is a biopolymer obtained from the cocoons of the Bombyx mori silkworm that offers many unique advantages. In this thesis work, fibroin was processed into a regenerated film and examined for potential biomaterial applications. The adsorption of bovine serum albumin onto the fibroin film was investigated to examine the biocompatibility of the film, and it was found that BSA adsorption capacity increased with an increase in BSA concentration. At 10 mg/mL of BSA, the BSA sorption reached 0.045 mg/cm2. This level of BSA is indicative of good blood compatibility and biocompatibility of the fibroin. The gas permeabilities of oxygen, nitrogen, and carbon dioxide were tested for potential applications in contact lenses and wound dressings. Over a pressure range of 70 – 350 psig, the permeability of oxygen and nitrogen was 5 Barrer, while that of carbon dioxide ranged from 26 to 37 Barrer. The oxygen transmissibility of the fibroin films prepared in this study was on the low end required for use in daily wear contact lenses, but sufficient to aid the healing process for use in wound dressings. The permeability and diffusivity of four model drugs in the fibroin film was investigated for potential applications in controlled drug release. The permeability at higher source concentrations leveled out to 0.8 – 4.3 x 10-7 cm2/s depending on the drug tested. The diffusion coefficient determined from sorption experiments was approximately 1.8 x 10-9 cm2/s, while the diffusion coefficients from desorption experiments were determined to be 0.8 – 2.7 x 10-9 cm2/s. The magnitude of the drug permeability and diffusivity are consistent with many other controlled release materials, and the fibroin film showed good potential for use in controlled release.
273

Observations and modeling of ice jam release events on the Hay River, NWT

Watson, David 06 1900 (has links)
The Town of Hay River experiences significant threats to life and property each spring as ice jam release events from upstream bring waves of ice and water to the town. The development of a forecasting tool for ice jam release events has been limited by insufficient data, especially regarding the speed of ice runs associated with ice jam release events. The purpose of this research was to document and analyze ice jam release events to provide the town warning of their potential timing and magnitude, and to contribute to general knowledge on ice jam release. Comprehensive field programs were undertaken from 2007 to 2009, and this new data was used to assess the River1D ice jam release forecasting model. Although the model showed reasonable approximations for wave arrival times for flood forecasting purposes, the predicted speeds and arrival times of ice runs did not agree very well with field observations. / Water Resources Engineering
274

Liquefied Natural Gas (LNG) Vapor Dispersion Modeling with Computational Fluid Dynamics Codes

Qi, Ruifeng 2011 August 1900 (has links)
Federal regulation 49 CFR 193 and standard NFPA 59A require the use of validated consequence models to determine the vapor cloud dispersion exclusion zones for accidental liquefied natural gas (LNG) releases. For modeling purposes, the physical process of dispersion of LNG release can be simply divided into two stages: source term and atmospheric dispersion. The former stage occurs immediately following the release where the behavior of fluids (LNG and its vapor) is mainly controlled by release conditions. After this initial stage, the atmosphere would increasingly dominate the vapor dispersion behavior until it completely dissipates. In this work, these two stages are modeled separately by a source term model and a dispersion model due to the different parameters used to describe the physical process at each stage. The principal focus of the source term study was on LNG underwater release, since there has been far less research conducted in developing and testing models for the source of LNG release underwater compared to that for LNG release onto land or water. An underwater LNG release test was carried out to understand the phenomena that occur when LNG is released underwater and to determine the characteristics of pool formation and the vapor cloud generated by the vaporization of LNG underwater. A mathematical model was used and validated against test data to calculate the temperature of the vapor emanating from the water surface. This work used the ANSYS CFX, a general-purpose computational fluid dynamics (CFD) package, to model LNG vapor dispersion in the atmosphere. The main advantages of CFD codes are that they have the capability of defining flow physics and allowing for the representation of complex geometry and its effects on vapor dispersion. Discussed are important parameters that are essential inputs to the ANSYS CFX simulations, including the mesh size and shape, atmospheric conditions, turbulence from the source term, ground surface roughness height, and effects of obstacles. A sensitivity analysis was conducted to illustrate the impact of key parameters on the accuracy of simulation results. In addition, a series of medium-scale LNG spill tests have been performed at the Brayton Fire Training Field (BFTF), College Station, TX. The objectives of these tests were to study key parameters of modeling the physical process of LNG vapor dispersion and collect data for validating the ANSYS CFX prediction results. A comparison of test data with simulation results demonstrated that CFX described the physical behavior of LNG vapor dispersion well, and its prediction results of distances to the half lower flammable limit were in good agreement with the test data.
275

Settlement of marine fouling organisms in response to novel antifouling coatings

Afsar, Anisul, Biological, Earth & Environmental Sciences, Faculty of Science, UNSW January 2008 (has links)
Surfaces submerged in marine environments rapidly get colonized by marine organisms, a process known as biofouling. Fouling costs maritime industries billions of dollars annually. The most common methods of combating marine biofouling are toxin containing antifouling coatings which often have detrimental non-target environmental effects. These effects and proposed bans on harmful substances in antifouling coatings, mandates development of more environmentally friendly antifouling technologies. Of these, foul-release coatings, which minimize attachment and adhesion of fouling organisms (rather than killing them) are promising alternatives. Here I explored the utility of petroleum waxes as novel antifouling/foul-release coatings. I first investigated the responses of propagules (larvae or spores) of six common fouling organisms to wax coatings in the laboratory. A wide variation in the response of these different organisms, and in the different types of response (settlement, adhesion, etc.) by the same organism, was observed, but the most inhibitory coatings were those made from microcrystalline wax and silicone oil. However, in field trials in Sydney Harbour, paraffin waxes had the strongest antifouling performance, with activity up to one year (the trial duration). These waxes also had strong foul-release effects, with fouling that did attach mostly removed by a low pressure water jet. Composition of fouling communities on paraffin waxes differed significantly from other waxes or controls, with little or no hard fouling organisms (barnacles, bivalves) on paraffin. The mechanisms of antifouling and foul-release actions of paraffin waxes appear to be due to changes in surface properties. The surfaces of the paraffin waxes changed noticeably after 4 - 8 weeks immersion in the sea or in seawater aquaria. Antibiotic treatments showed that this change in surface appearance was due to biological (microbial) activity. Bacteria appear to remove the amorphous phase from the surface of the paraffin waxes, revealing an underlying crystalline phase, which is less affected by bacterial action. I suggest that these crystals form a microstructured ?bed of nails? of crystals of varying shapes and sizes which inhibit settlement and reduce adhesion strength of those organisms which do settle.
276

The development of a continuous encapsulation method in a microfluidic device

Edeline Wong Unknown Date (has links)
Delivery of a desired ‘active’ compound (for example, starch (as an energy substrate)) to the gastrointestinal (GI) tract is most easily achieved by oral administration. Unfortunately, the efficacy of most actives is greatly reduced due to the aggressive nature of digestive enzymes and processes which occur in this environment. A commonly applied strategy to prevent deactivation of the active prior to absorption at the target site is to encapsulate the active in another ‘sacrificial’ or non-degradable polymer matrix. Traditionally, the active and matrix is processed into a microparticle format for easy oral delivery (dispersed in a liquid or paste). However, established encapsulation methods which rely on bulk-phase processing to produce these microparticles (e.g. emulsification) are far from ideal as they lack control over the final microparticle size, size distribution, composition and shape. The lack of control in the physical properties of the resultant microparticles in turn results in an inherent lack of control over the kinetics of release of the active at the target site. In contrast, recent advances in microfluidic device fabrication and methodology development have firmly proven that these new generation devices can produce monodisperse droplets and microparticles in a continuous, controllable and predictable manner. Their potential as a processing tool for the production of highly tailored microparticles for targeted delivery, however, remains to be fully explored. Both the physical and chemical (physicochemical) properties of microparticles made from a single polymer system may be altered by the deposition of one or more additional polymer layers onto the microparticle surface (for example, alternating layers of oppositely charged polyelectrolytes to produce core-shell like particles), and this method has proven to be favorable with regards to retarding the release of active compounds. However, this addition of alternate layers of oppositely charged polyelectrolytes (so called Layer-by-Layer (LbL) deposition or assembly) does increase the number of processing steps the particles must undergo prior to storage or delivery. Further, the overall effectiveness of this additional processing is still highly dependent on the properties of the original (core) microparticles. In this thesis, a microfluidic technique was developed to encapsulate starch granules in alginate-based microparticles. Using this continuous technique, the size of the microparticles produced were shown to be monodisperse and reproducible. The developed microfluidic device included a drop formation section, followed by a gelation region and a transfer section, where the particles made on-chip are transferred from the carrier oil phase to an aqueous phase prior to collection. The microparticles collected from this microfluidic device were found to be stable for several weeks and in stark contrast to particles produced via a standard bulk emulsification routes, no aggregation was observed over this time frame. The release profile of glucose (as a result of starch hydrolysation) from microparticles produced using both a standard bulk emulsification method and the developed microfluidic-based method were compared. It was found that the monodisperse particles produced using the microfluidic method showed significantly more retardation to release compared to the glucose release profile from bulk-processed particles. This retardation effect was more pronounced when a thin layer of an oppositely charged polyelectrolyte (chitosan) was adsorbed onto the negatively charged surface (alginate is an anionic polyelectrolyte) of the microfluidic-processed microparticle. The microfluidic device developed within this thesis and the resulting tailored microparticles thus show significant potential with regards to offering a new generation of microparticle delivery systems with highly deterministic delivery over extended lifetimes.
277

The development of a continuous encapsulation method in a microfluidic device

Edeline Wong Unknown Date (has links)
Delivery of a desired ‘active’ compound (for example, starch (as an energy substrate)) to the gastrointestinal (GI) tract is most easily achieved by oral administration. Unfortunately, the efficacy of most actives is greatly reduced due to the aggressive nature of digestive enzymes and processes which occur in this environment. A commonly applied strategy to prevent deactivation of the active prior to absorption at the target site is to encapsulate the active in another ‘sacrificial’ or non-degradable polymer matrix. Traditionally, the active and matrix is processed into a microparticle format for easy oral delivery (dispersed in a liquid or paste). However, established encapsulation methods which rely on bulk-phase processing to produce these microparticles (e.g. emulsification) are far from ideal as they lack control over the final microparticle size, size distribution, composition and shape. The lack of control in the physical properties of the resultant microparticles in turn results in an inherent lack of control over the kinetics of release of the active at the target site. In contrast, recent advances in microfluidic device fabrication and methodology development have firmly proven that these new generation devices can produce monodisperse droplets and microparticles in a continuous, controllable and predictable manner. Their potential as a processing tool for the production of highly tailored microparticles for targeted delivery, however, remains to be fully explored. Both the physical and chemical (physicochemical) properties of microparticles made from a single polymer system may be altered by the deposition of one or more additional polymer layers onto the microparticle surface (for example, alternating layers of oppositely charged polyelectrolytes to produce core-shell like particles), and this method has proven to be favorable with regards to retarding the release of active compounds. However, this addition of alternate layers of oppositely charged polyelectrolytes (so called Layer-by-Layer (LbL) deposition or assembly) does increase the number of processing steps the particles must undergo prior to storage or delivery. Further, the overall effectiveness of this additional processing is still highly dependent on the properties of the original (core) microparticles. In this thesis, a microfluidic technique was developed to encapsulate starch granules in alginate-based microparticles. Using this continuous technique, the size of the microparticles produced were shown to be monodisperse and reproducible. The developed microfluidic device included a drop formation section, followed by a gelation region and a transfer section, where the particles made on-chip are transferred from the carrier oil phase to an aqueous phase prior to collection. The microparticles collected from this microfluidic device were found to be stable for several weeks and in stark contrast to particles produced via a standard bulk emulsification routes, no aggregation was observed over this time frame. The release profile of glucose (as a result of starch hydrolysation) from microparticles produced using both a standard bulk emulsification method and the developed microfluidic-based method were compared. It was found that the monodisperse particles produced using the microfluidic method showed significantly more retardation to release compared to the glucose release profile from bulk-processed particles. This retardation effect was more pronounced when a thin layer of an oppositely charged polyelectrolyte (chitosan) was adsorbed onto the negatively charged surface (alginate is an anionic polyelectrolyte) of the microfluidic-processed microparticle. The microfluidic device developed within this thesis and the resulting tailored microparticles thus show significant potential with regards to offering a new generation of microparticle delivery systems with highly deterministic delivery over extended lifetimes.
278

The development of a continuous encapsulation method in a microfluidic device

Edeline Wong Unknown Date (has links)
Delivery of a desired ‘active’ compound (for example, starch (as an energy substrate)) to the gastrointestinal (GI) tract is most easily achieved by oral administration. Unfortunately, the efficacy of most actives is greatly reduced due to the aggressive nature of digestive enzymes and processes which occur in this environment. A commonly applied strategy to prevent deactivation of the active prior to absorption at the target site is to encapsulate the active in another ‘sacrificial’ or non-degradable polymer matrix. Traditionally, the active and matrix is processed into a microparticle format for easy oral delivery (dispersed in a liquid or paste). However, established encapsulation methods which rely on bulk-phase processing to produce these microparticles (e.g. emulsification) are far from ideal as they lack control over the final microparticle size, size distribution, composition and shape. The lack of control in the physical properties of the resultant microparticles in turn results in an inherent lack of control over the kinetics of release of the active at the target site. In contrast, recent advances in microfluidic device fabrication and methodology development have firmly proven that these new generation devices can produce monodisperse droplets and microparticles in a continuous, controllable and predictable manner. Their potential as a processing tool for the production of highly tailored microparticles for targeted delivery, however, remains to be fully explored. Both the physical and chemical (physicochemical) properties of microparticles made from a single polymer system may be altered by the deposition of one or more additional polymer layers onto the microparticle surface (for example, alternating layers of oppositely charged polyelectrolytes to produce core-shell like particles), and this method has proven to be favorable with regards to retarding the release of active compounds. However, this addition of alternate layers of oppositely charged polyelectrolytes (so called Layer-by-Layer (LbL) deposition or assembly) does increase the number of processing steps the particles must undergo prior to storage or delivery. Further, the overall effectiveness of this additional processing is still highly dependent on the properties of the original (core) microparticles. In this thesis, a microfluidic technique was developed to encapsulate starch granules in alginate-based microparticles. Using this continuous technique, the size of the microparticles produced were shown to be monodisperse and reproducible. The developed microfluidic device included a drop formation section, followed by a gelation region and a transfer section, where the particles made on-chip are transferred from the carrier oil phase to an aqueous phase prior to collection. The microparticles collected from this microfluidic device were found to be stable for several weeks and in stark contrast to particles produced via a standard bulk emulsification routes, no aggregation was observed over this time frame. The release profile of glucose (as a result of starch hydrolysation) from microparticles produced using both a standard bulk emulsification method and the developed microfluidic-based method were compared. It was found that the monodisperse particles produced using the microfluidic method showed significantly more retardation to release compared to the glucose release profile from bulk-processed particles. This retardation effect was more pronounced when a thin layer of an oppositely charged polyelectrolyte (chitosan) was adsorbed onto the negatively charged surface (alginate is an anionic polyelectrolyte) of the microfluidic-processed microparticle. The microfluidic device developed within this thesis and the resulting tailored microparticles thus show significant potential with regards to offering a new generation of microparticle delivery systems with highly deterministic delivery over extended lifetimes.
279

DNA-LPEI complexes encapsulated in LTP nanospheres as a non-viral gene therapy vector

Ditto, Andrew. January 2006 (has links)
Thesis (M.S.)--University of Akron, Dept. of Biomedical Engineering, 2006. / "December, 2006." Title from electronic thesis title page (viewed 12/31/2008) Advisor, Yang Yun; Committee members, Stephanie Lopina, Steven Schmidt; Department Chair, Daniel Sheffer; Dean of the College, George K. Haritos; Dean of the Graduate School, George R. Newkome. Includes bibliographical references.
280

Application of Silk Fibroin In Controlled-Release of Theophylline/

Özgarip, Yarkın. Bayraktar, Oğuz January 2004 (has links) (PDF)
Thesis (Master)--İzmir Institute of Technology, İzmir, 2004. / Includes bibliographical references (leaves. 55-58).

Page generated in 0.0599 seconds